令,解得,,. 查看更多

 

題目列表(包括答案和解析)

解:因為有負(fù)根,所以在y軸左側(cè)有交點,因此

解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

查看答案和解析>>

.已知函數(shù)同時滿足:①不等式 的解集有且只有一個元素;②在定義域內(nèi)存在,使得不等式成立.設(shè)數(shù)列的前項和為

   (1)求數(shù)列的通項公式;

   (2)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)個數(shù)稱為這個數(shù)列的變號數(shù),令為正整數(shù)),求數(shù)列的變號數(shù)

查看答案和解析>>

解答題:解答時應(yīng)寫出文字說明、證明過程或演算步驟

已知定義在(-1,1)上的函數(shù)f(x)滿足,且對x,y∈(-1,1)時,有

(1)

判斷f(x)在(-1,1)上的奇偶性,并加以證明;

(2)

,求數(shù)列{f(x)}的通項公式;

(3)

設(shè)Tn為數(shù)列{}的前n項和,問是否存在正整數(shù)m,使得對任意的n∈N*,有成立?若存在,求出m的最小值,若不存在,則說明理由.

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟

(理科生做)某商場舉行抽獎促銷活動,抽獎規(guī)則是:從裝有9個白球、1個紅球的箱子中每次隨機(jī)地摸出一個球,記下顏色后放回,摸出一個紅球可獲得獎金10元;摸出2個紅球可獲得獎金50元.現(xiàn)有甲,乙兩位顧客,規(guī)定:甲摸一次,乙摸兩次,令x 表示甲,乙摸球后獲得的獎金總額.求:

(1)

x 的分布列;

(2)

x 的的數(shù)學(xué)期望.

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

已知定義在(—1,1)上的函數(shù)滿足,且對時,有

(1)

判斷在(—1,1)上的奇偶性,并加以證明;

(2)

,求數(shù)列{}的通項公式;

(3)

設(shè)為數(shù)列{}的前項和,問是否存在正整數(shù),使得對任意的,有成立?若存在,求出的最小值,若不存在,則說明理由.(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>


同步練習(xí)冊答案