題目列表(包括答案和解析)
MA |
AF |
MB |
BF |
GA |
GB |
(12分)如圖,已知拋物線C:,為其準線,過其對稱軸上一點P 作直線與拋物線交于A、B兩點,連結(jié)OA、OB并延長AO、BO分別交于點M、N。(1)求的值;
(2)記點Q是點P關(guān)于原點的對稱點,
設P分有向線段所成的比為,
且 求證:
(14分)如圖,已知拋物線C1: y=x2, 與圓C2: x2+(y+1)2="1," 過y軸上一點A(0, a)(a>0)作圓C2的切線AD,切點為D(x0, y0).
(1)證明:(a+1)(y0+1)=1
(2)若切線AD交拋物線C1于E,且E為AD的中點,求點A縱坐標a.
如圖,已知拋物線:和⊙:,過拋物線上一點作兩條直線與⊙相切于、兩點,分別交拋物線于兩點,圓心點到拋物線準線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)當的角平分線垂直軸時,求直線的斜率;
(Ⅲ)若直線在軸上的截距為,求的最小值.
如圖,已知拋物線C的頂點在原點,開口向右,過焦點且垂直于拋物線對稱軸的弦長為2,過C上一點A作兩條互相垂直的直線交拋物線于P,Q兩點.
(1)若直線PQ過定點,求點A的坐標;
(2)對于第(1)問的點A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個數(shù);若不能,說明理由.
一、選擇題:本大題共8題,每小題5分,共40分。
題號
1
2
3
4
5
6
7
8
答案
D
B
D
B
C
A
B
B
二、填空題:本大題共7小題,每小題5分,共30分。
9.55 10.-3 11. 12. 13.1 14.2 15.
三、解答題:本大題共6小題,共80分。解答應寫出文字說明,證明過程或演算步驟。
16.(本小題滿分12分)
已知向量,,,設.
(I)求函數(shù)的最小正周期。(II),求的值域。
解:(I)因為
………………………………………………………4分
所以函數(shù)的最小正周期.……………………………………6分
(II)因為,
………………………………………………………………………8分
所以……………………………………………………………10分
所以。 ……………………………………………………………… 12分
17.(本小題滿分12分)
(1); ………………………………………………………4分
(2); …………………………………………………………… 8分
(3)表面積S=48. ……………………………………………………………… 12分
18.(本小題滿分14分)
解答(1)x=1+1+1=3 或者x=-
(2)
i
I=3
I=5
P
(0.53)+ (0.53)=0.25
1-0.25=0.75
Ei=3×0.25+5×0.75=4.5---------------(8分)
(3)
ξ
ξ=1
ξ=3
P
18×0.55=
6×0.55+2×0.53=
Eξ=1×+3×=----------(14分)
所有情況列表(僅供參考)
ξ
x
x
ξ=1
-1
-1-1+1-1+1
+1
-1-1+1-1+1
-1-1+1+1-1
-1-1+1+1-1
-1+1-1-1+1
-1+1-1-1+1
-1+1-1+1-1
-1+1-1+1-1
-1+1+1-1-1
-1+1+1-1-1
+
+
+
+
+1-1+
+1-1+
+1+
+1+
ξ=3
-3
+
+3
-1+1+1+1+1
-1+1-1-1-1
+1-1+1+1+1
-1-1+1-1-1
+1+1-1+1+1
-1-1-1
+1+1+1
19、(本小題滿分14分)
解:(I)∵ ∴ ∴
∴ ………3分
∴ ………………………………4分
設 ∴
∴…………………………………………6分
∴……………………………………………………………………7分
(II)∵, ………………………………………………………8分
∴…………………………………………………………………9分
∴…………………………………………………………10分
由……………………12分
…………………………………………………………14分
∴直線EF與拋物線相切。
20.(本小題滿分14分)
解:(1)∵x,y
令為恒為零
∴
令
∴
顯然
又函數(shù)為單調(diào)函數(shù),可得為等差數(shù)列
∴ 從而---------------------------------------------------------(6分)
(2)∵
∴
是遞增數(shù)列。--------------------------------(12分)
當時, ------------------------------------------------------(14分)
21、(本小題滿分14分)
解:(1)由已知得函數(shù),且
當又∵
當
∴函數(shù)的單調(diào)遞增區(qū)間是
(2)設,
則 (5分)
當
又上連續(xù),內(nèi)是增函數(shù)。(7分)
(8分)
(9分)
(10分)
(3)方法一由(1)知,設
將……12分
即
(14分)
內(nèi)是增函數(shù)。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com