10.將面積為2的長方形ABCD沿對角線AC折起.使二面角D-AC-B的大小為.則三棱錐D-ABC的外接球的體積的最小值是學(xué)科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

將面積為2的長方形ABCD沿對角線AC折起,使二面角D-AC-B的大小為α(0°<α<180°),則三棱錐D-ABC的外接球的體積的最小值是( 。
A、
8
2
π
3
B、
32π
3
C、
3
D、與α的值有關(guān)的數(shù)

查看答案和解析>>

將面積為2的長方形ABCD沿對角線AC折起,使二面角D-AC-B的大小為α(0°<α<180°),則三棱錐D-ABC的外接球的體積的最小值是( 。
A.
8
2
π
3
B.
32π
3
C.
3
D.與α的值有關(guān)的數(shù)

查看答案和解析>>

將面積為2的長方形ABCD沿對角線AC折起,使二面角D-AC-B的大小為α(0°<α<180°),則三棱錐D-ABC的外接球的體積的最小值是( )
A.
B.
C.
D.與α的值有關(guān)的數(shù)

查看答案和解析>>

將面積為2的長方形ABCD沿對角線AC折起,使二面角D-AC-B的大小為α(0°<α<180°),則三棱錐D-ABC的外接球的體積的最小值是( )
A.
B.
C.
D.與α的值有關(guān)的數(shù)

查看答案和解析>>

將面積為2的長方形ABCD沿對角線AC折起,使二面角D-AC-B的大小為α(0°<α<180°),則三棱錐D-ABC的外接球的體積的最小值是( )
A.
B.
C.
D.與α的值有關(guān)的數(shù)

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

CBCDB    DADCA

二、填空題:本大題共5小題,每小題5分,共25分.

11.90       12.[)       13.       14.1 ;3899       15.

三、解答題:本大題共6小題,共75分.

16.(本小題滿分12分)

解:(1)

……3分……4分

的單調(diào)區(qū)間,k∈Z。6分

(2)由得 .....7分

的內(nèi)角......9分

       ...11分

 。12分

17. (本小題滿分12分)

解:(1)記“甲擊中目標(biāo)的次數(shù)減去乙擊中目標(biāo)的次數(shù)為2”為事件A,則

,解得.....4分

(2)的所有可能取值為0,1,2.記“在第一次射擊中甲擊中目標(biāo)”為事件;記“在第一次射擊中乙擊中目標(biāo)”為事件.

   則,

  

   ,.....10分

所以的分布列為

0

1

2

P

=.....12分學(xué)科網(wǎng)(Zxxk.Com)

18. (本小題滿分12分)

解:(1)當(dāng)中點(diǎn)時,有平面

證明:連結(jié),連結(jié)

∵四邊形是矩形  ∴中點(diǎn)

中點(diǎn),從而

平面,平面

平面.....4分

(2)建立空間直角坐標(biāo)系如圖所示,

,,,,

.....6分

所以,.

設(shè)為平面的法向量,則有,即

,可得平面的一個法向量為,.....9分

而平面的一個法向量為 .....10分

所以

所以二面角的余弦值為 .....12分

(用其它方法解題酌情給分)

19.(本小題滿分13分)

解:(1)由題意知

因此數(shù)列是一個首項.公比為3的等比數(shù)列,所以......2分

=100―(1+3+9)

所以=87,解得

因此數(shù)列是一個首項,公差為―5的等差數(shù)列,

所以 .....4分

 (2) 求視力不小于5.0的學(xué)生人數(shù)為.....7分

 (3) 由   ①

可知,當(dāng)時,  ②

①-②得,當(dāng)時, ,

 , .....11分

因此數(shù)列是一個從第2項開始的公比為3的等比數(shù)列,

數(shù)列的通項公式為.....13分

20.(本小題滿分13分)

解:(1)由于,

     ∴,解得,

     ∴橢圓的方程是.....3分
(2)∵,∴三點(diǎn)共線,

,設(shè)直線的方程為,

   由消去得:

   由,解得.....6分

   設(shè),由韋達(dá)定理得①,

    又由得:,∴②.

    將②式代入①式得:,

    消去得: .....10分

    設(shè),當(dāng)時, 是減函數(shù),

    ∴, ∴,

解得,又由,

∴直線AB的斜率的取值范圍是.....13分

21. (本小題滿分13分)

(1)解:

     ①若

,則,∴,即.

       ∴在區(qū)間是增函數(shù),故在區(qū)間的最小值是

.....2分

     ②若

,得.

又當(dāng)時,;當(dāng)時,,

在區(qū)間的最小值是.....4分

   (2)證明:當(dāng)時,,則,

      ∴,

      當(dāng)時,有,∴內(nèi)是增函數(shù),

      ∴

      ∴內(nèi)是增函數(shù),

      ∴對于任意的,恒成立.....7分

   (3)證明:

,

      令

      則當(dāng)時,

                      ,.....10分

      令,則,

當(dāng)時, ;當(dāng)時,;當(dāng)時,,

是減函數(shù),在是增函數(shù),

,

,即不等式對于任意的恒成立.....13分

 


同步練習(xí)冊答案