(I)令.求函數(shù)在處的切線方程, 查看更多

 

題目列表(包括答案和解析)

(12分)已知函數(shù),

   (I)令,求函數(shù)處的切線方程;

   (Ⅱ)若上單調(diào)遞增,求的取值范圍。

查看答案和解析>>

設(shè)函數(shù)

(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(II)令,其圖像上任意一點(diǎn)P處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;

(III)當(dāng)時,方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

設(shè)函數(shù)
(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)令,其圖像上任意一點(diǎn)P處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(III)當(dāng)時,方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

設(shè)函數(shù)數(shù)學(xué)公式
(I)當(dāng)a=b=數(shù)學(xué)公式時,求函數(shù)f(x)的單調(diào)區(qū)間;
(II)令數(shù)學(xué)公式<x≤3),其圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k≤數(shù)學(xué)公式恒成立,求實(shí)數(shù)a的取值范圍;
(III)當(dāng)a=0,b=-1時,方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

設(shè)函數(shù)
(I)當(dāng)a=b=時,求函數(shù)f(x)的單調(diào)區(qū)間;
(II)令<x≤3),其圖象上任意一點(diǎn)P(x,y)處切線的斜率k≤恒成立,求實(shí)數(shù)a的取值范圍;
(III)當(dāng)a=0,b=-1時,方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有一項是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

答案

B

B

D

D

C

A

C

B

A

C

二、填空題:本大題共6小題,每小題4分,共24分。把答案填在題中橫線上。

11.13     12.       13.2     14.4       15.      16.1005

三、解答題:本大題共6小題,共78分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

解(I)

      

  (Ⅱ)由,

       

18.(本小題滿分12分)

解(I)記事件A;射手甲剩下3顆子彈,

      

   (Ⅱ)記事件甲命中1次10環(huán),乙命中兩次10環(huán),事件;甲命中2次10環(huán),乙命中1次10環(huán),則四次射擊中恰有三次命中10環(huán)為事件

(Ⅲ)的取值分別為16,17,18,19,20,

     

19.(本小題滿分12分)

解法一:

(I)設(shè)的中點(diǎn),連結(jié),

  的中點(diǎn),的中點(diǎn),

==(//)==(//)

==(//)

   

(Ⅱ)

 

(Ⅲ)過點(diǎn)作垂線,垂足為,連結(jié)

   

解法二:

分別以所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,

(I)

     

 (Ⅱ)設(shè)平面的一個法向量為

      

(Ⅲ)平面的一個法向量為

     

 

20.(本小題滿分12分)

   (1)由

        切線的斜率切點(diǎn)坐標(biāo)(2,5+

        所求切線方程為

   (2)若函數(shù)為上單調(diào)增函數(shù),

        則上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述問題等價于

        而為在上的減函數(shù),

        則于是為所求

21.(本小題滿分14分)

解(I)設(shè)

       

 (Ⅱ)(1)當(dāng)直線的斜率不存在時,方程為

      

      

  (2)當(dāng)直線的斜率存在時,設(shè)直線的方程為,

       設(shè)

      ,得

      

      

      

              

22.(本小題滿分14分)

解(I)由題意,令

      

 (Ⅱ)

      

  (1)當(dāng)時,成立:

  (2)假設(shè)當(dāng)時命題成立,即

       當(dāng)時,

      

 


同步練習(xí)冊答案