設直線的方程為代入.得. 查看更多

 

題目列表(包括答案和解析)

已知平面直角坐標系中的點A(-1,0),B(3,2),求直線AB的方程的一個算法如下,請將其補充完整。
第一步,根據題意設直線AB的方程為y=kx+b
第二步,將A(-1,0),B(3,2)代入第一步所設的方程,得到-k+b=0①;3k+b=2②,
第三步,(    )
第四步,把第三步所得結果代入第一步所設的方程,得到
第五步,將第四步所得結果整理,得到方程x-2y+1=0。

查看答案和解析>>

已知中心在原點,焦點在軸上的橢圓的離心率為,且經過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

【解析】第一問利用設橢圓的方程為,由題意得

解得

第二問若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,

所以

所以.解得。

解:⑴設橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為

所以

所以

,

因為,即,

所以

所以,解得

因為A,B為不同的兩點,所以k=1/2.

于是存在直線L1滿足條件,其方程為y=1/2x

 

查看答案和解析>>

如圖,已知直線)與拋物線和圓都相切,的焦點.

(Ⅰ)求的值;

(Ⅱ)設上的一動點,以為切點作拋物線的切線,直線軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,    直線軸交點為,連接交拋物線、兩點,求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去)

與拋物線的相切點為,又,得,.     

代入直線方程得:,∴    所以

第二問中,由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因為是定點,所以點在定直線

第三問中,設直線,代入結合韋達定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去).     …………………(2分)

與拋物線的相切點為,又,得.     

代入直線方程得:,∴    所以,.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因為是定點,所以點在定直線上.…(2分)

(Ⅲ)設直線,代入,  ……)得,                 ……………………………     (2分)

的面積范圍是

 

查看答案和解析>>

已知曲線上動點到定點與定直線的距離之比為常數

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標得到

第二問當斜率k不存在時,檢驗得不符合要求;

當直線l的斜率為k時,;,化簡得

第三問點N與點M關于X軸對稱,設,, 不妨設

由于點M在橢圓C上,所以

由已知,則

,

由于,故當時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設點P的坐標為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設點P的坐標為.

由條件得消去并整理得  ②

,,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設點P的坐標為.

由P在橢圓上,有

因為,,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>


同步練習冊答案