6.已知正數(shù)x.y滿足等式x+y-2xy+4=0.則A.xy的最大值是2.且x+y的最小值為4 B.xy的最小值是4.且x+y的最大值為4C.xy的最大值是2.且x+y的最大值為4 D.xy的最小值是4.且x+y的最小值為4 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,)在直線y=x+上;數(shù)列{bn}滿足bn+2-2bn+1-bn=0(n∈N*),且b3=11,它的前9項(xiàng)和為153.

(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;

(2)設(shè)cn,數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn對一切n∈N*都成立的最大正整數(shù)k的值;

查看答案和解析>>

若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.

(1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;

(2)對任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab;

(3)已知函數(shù)f(x)的定義域.任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

若實(shí)數(shù)x、y、m滿足|xm|<|ym|,則稱xy接近m

(1)若x21比3接近0,求x的取值范圍;

(2)對任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2a3b3接近2ab;

(3)已知函數(shù)f(x)的定義域D={x|xk∈Z,x∈R}.任取x∈Df(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

已知函數(shù)f(t)對任意實(shí)數(shù)x、y都有:f(x+y)=f(x)+f(y)+3xy(x+y+2)+3,且f(1)=1.

(1)求f(0)、f(-1)、f(2)的值;

(2)若t為正整數(shù),求f(t)的表達(dá)式.

(3)滿足條件f(t)=t的所有整數(shù)t能否構(gòu)成等差數(shù)列?若能構(gòu)成等差數(shù)列,求出此數(shù)列;若不能構(gòu)成等差數(shù)列,請說明理由.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c的圖像的頂點(diǎn)坐標(biāo)是(,-),且f(3)=2

(Ⅰ)求y=f(x)的表達(dá)式,并求出f(1),f(2)的值;

(Ⅱ)數(shù)列{an},{bn},若對任意的實(shí)數(shù)x都滿足g(x)·f(x)+anx+bn=xn+1,n∈N*,其中g(shù)(x)是定義在實(shí)數(shù)R上的一個(gè)函數(shù),求數(shù)列{an}、{bn}的通項(xiàng)公式;

(Ⅲ)設(shè)圓Cn:(x-an)2+(y-bn)2,若圓Cn與圓Cn+1外切,{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn是前n個(gè)圓的面積之和,求.(n∈N*)

查看答案和解析>>

一、選擇題

1.B  2.A  3.C  4.B  5.B  6.D  7.C  8.C  9.D  10.A

二、填空題

11.  12.  13.-6  14.  15.①②③④

三、解答題

16.解:⑴

                                                                                                                  3分

=1+1+2cos2x=2+2cos2x=4cos2x

∵x∈[0,]  ∴cosx≥0

=2cosx                                                                                                     6分

⑵ f (x)=cos2x-?2cosx?sinx=cos2x-sin2x

      =2cos(2x+)                                                                                            8分

∵0≤x≤  ∴  ∴  ∴

,當(dāng)x=時(shí)取得該最小值

 ,當(dāng)x=0時(shí)取得該最大值                                                                    12分

17.由題意知,在甲盒中放一球概率為時(shí),在乙盒放一球的概率為                  2分

①當(dāng)n=3時(shí),x=3,y=0的概率為                                                 4分

②當(dāng)n=4時(shí),x+y=4,又|x-y|=ξ,所以ξ的可能取值為0,2,4

(i)當(dāng)ξ=0時(shí),有x=2,y=2,它的概率為                                      4分

(ii)當(dāng)ξ=2時(shí),有x=3,y=1或x=1,y=3

   它的概率為

(iii)當(dāng)ξ=4時(shí),有x=4,y=0或x=0,y=4

   它的概率為

故ξ的分布列為

ξ

0

2

4

10分

p

∴ξ的數(shù)學(xué)期望Eξ=                                                             12分

18.解:⑴證明:在正方形ABCD中,AB⊥BC

又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

同理CD⊥PA  ∴PA⊥面ABCD    4分

⑵在AD上取一點(diǎn)O使AO=AD,連接E,O,

則EO∥PA,∴EO⊥面ABCD 過點(diǎn)O做

OH⊥AC交AC于H點(diǎn),連接EH,則EH⊥AC,

從而∠EHO為二面角E-AC-D的平面角                                                             6分

在△PAD中,EO=AP=在△AHO中∠HAO=45°,

∴HO=AOsin45°=,∴tan∠EHO=,

∴二面角E-AC-D等于arctan                                                                    8分

⑶當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC,理由如下:

∵AD∥2FC,∴,又由已知有,∴PF∥ES

∵PF面EAC,EC面EAC  ∴PF∥面EAC,

即當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC                                                                         12分

19.⑴據(jù)題意,得                                                4分

                                                                          5分

⑵由⑴得:當(dāng)5<x<7時(shí),y=39(2x3-39x2+252x-535)

當(dāng)5<x<6時(shí),y'>0,y=f (x)為增函數(shù)

當(dāng)6<x<7時(shí),y'<0,y=f (x)為減函數(shù)

∴當(dāng)x=6時(shí),f (x)極大值=f (16)=195                                                                      8分

當(dāng)7≤x<8時(shí),y=6(33-x)∈(150,156]

當(dāng)x≥8時(shí),y=-10(x-9)2+160

當(dāng)x=9時(shí),y極大=160                                                                                           10分

綜上知:當(dāng)x=6時(shí),總利潤最大,最大值為195                                                     12分

20.⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

<abbr id="cewqy"><strong id="cewqy"></strong></abbr>
    • <kbd id="cewqy"></kbd>
      <pre id="cewqy"></pre>
          • (x0≠-1且x0≠3)

            BN:y=  、

            聯(lián)立①②  ∴                                                                                        4分

            ∵點(diǎn)M(xo,yo)在圓⊙O上,代入圓的方程:

            整理:y2=-2(x+1)  (x<-1)                                                                             6分

            ⑵由

            設(shè)S(x1、y1),T(x2、y2),ST的中點(diǎn)坐標(biāo)(x0、y0)

            則x1+x2=-(3+)

            x1x2                                                                                                           8分

            中點(diǎn)到直線的距離

            故圓與x=-總相切.                                                                                         13分

            ⑵另解:∵y2=-2(x+1)知焦點(diǎn)坐標(biāo)為(-,0)                                                   2分

            頂點(diǎn)(-1,0),故準(zhǔn)線x=-                                                                               4分

            設(shè)S、T到準(zhǔn)線的距離為d1,d2,ST的中點(diǎn)O',O'到x=-的距離為

            又由拋物線定義:d1+d2=|ST|,∴

            故以ST為直徑的圓與x=-總相切                                                                      8分

            21.解:⑴由,得

            ,有

                =

                =

            又b12a1=2,                                                                               3分

                                                                                                4分

            ⑵證法1:(數(shù)學(xué)歸納法)

            1°,當(dāng)n=1時(shí),a1=1,滿足不等式                                                    5分

            2°,假設(shè)n=k(k≥1,k∈N*)時(shí)結(jié)論成立

            ,那么

                                                                                                                   7分

            由1°,2°可知,n∈N*,都有成立                                                           9分

            ⑵證法2:由⑴知:                (可參照給分)

            ,,∴

              ∵

              ∴

            當(dāng)n=1時(shí),,綜上

            ⑵證法3:

            ∴{an}為遞減數(shù)列

            當(dāng)n=1時(shí),an取最大值  ∴an≤1

            由⑴中知  

            綜上可知

            欲證:即證                                                                             11分

            即ln(1+Tn)-Tn<0,構(gòu)造函數(shù)f (x)=ln(1+x)-x

            當(dāng)x>0時(shí),f ' (x)<0

            ∴函數(shù)y=f (x)在(0,+∞)內(nèi)遞減

            ∴f (x)在[0,+∞)內(nèi)的最大值為f (0)=0

            ∴當(dāng)x≥0時(shí),ln(1+x)-x≤0

            又∵Tn>0,∴l(xiāng)n(1+Tn)-Tn<0

            ∴不等式成立                                                                                           14分

             


            同步練習(xí)冊答案
            <del id="cewqy"></del>
            • <nav id="cewqy"></nav><option id="cewqy"><th id="cewqy"></th></option>