已知函數(shù)上為增函數(shù). (1)求k的取值范圍, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=sin2ωx+
3
cosωxcos(
π
2
-ωx)(ω>0),且函數(shù)y=f(x)的圖象相鄰兩條對(duì)稱(chēng)軸之間的距為
π
2

(1)求f(
π
6
)的值.
(2)若函數(shù) f(kx+
π
12
)(k>0)在區(qū)間[-
π
6
π
3
]上單調(diào)遞增,求k的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=
ax
x2+b
,在x=1處取得極值2.
(1)求函數(shù)f(x)的解析式
(2)m滿足什么條件時(shí),區(qū)間(m,2m+1)為函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若P(x0,y0)為f(x)=
ax
x2+b
圖象上任意一點(diǎn),直線/與.f(x)的圖象切于P點(diǎn),不妨設(shè)直線l的斜率為對(duì)于任意的x0∈R和對(duì)于任意的t∈[4,5],均有k≥c(t2-2t-3)恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=ax,g(x)=lnx,其中a∈R.
( I)若函數(shù)F(x)=f(x)-g(x)有極值1,求a的值;
( II)若函數(shù)G(x)=f[sin(1-x)]+g(x)在區(qū)間(0,1)上為增函數(shù),求a的取值范圍;
(Ⅲ)證明:
n
k=1
sin
1
(k+1)2
<ln2.

查看答案和解析>>

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱(chēng)f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱(chēng)f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實(shí)數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請(qǐng)問(wèn):是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)定理:函數(shù)g(x)=ax+
b
x
(a、b是正常數(shù))在區(qū)間(0,
b
a
)
上為減函數(shù),在區(qū)間(
b
a
,+∞)
上為增函數(shù).參考該定理,解決下面問(wèn)題:是否存在實(shí)數(shù)m同時(shí)滿足以下兩個(gè)條件:①不等式f(x)-
m
2
>0
恒成立;②方程f(x)-m=0有解.若存在,試求出實(shí)數(shù)m的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案