綜上可得.(.).-----14分 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2000平方米的樓房。經(jīng)測算,如果將樓房建為x(x ≥ 10)層,則每平方米的平均建筑費用為560 + 48x(單位:元).⑴寫出樓房平均綜合費用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;

⑵該樓房應(yīng)建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

(注:平均綜合費用 = 平均建筑費用 + 平均購地費用,平均購地費用 = )

查看答案和解析>>

(本題滿分14分)某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2000平方米的樓房。經(jīng)測算,如果將樓房建為xx ≥ 10)層,則每平方米的平均建筑費用為560 + 48x(單位:元).⑴寫出樓房平均綜合費用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;⑵該樓房應(yīng)建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

(注:平均綜合費用 = 平均建筑費用 + 平均購地費用,平均購地費用 = )

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。

第一問中,利用當(dāng)時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時,令,對稱軸

上單調(diào)遞增,又    

① 當(dāng),即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>


同步練習(xí)冊答案