A. B. C. D. [1.2] 查看更多

 

題目列表(包括答案和解析)

{1,2}∪{2,3}的所有非空子集的個數(shù)為( 。

查看答案和解析>>

.在1,2,3,4,5中任取兩個不同的數(shù)作為坐標構成的平面向量的集合為M。對M中的每一個向量,作與其大小相等且數(shù)量積為零的向量,構成向量集合V。分別在向量集合M、V中各任取一個向量與向量,其滿足的概率是                            (    )

       A.                  B.                    C.                    D.

 

查看答案和解析>>

.在1,2,3,4,5中任取兩個不同的數(shù)作為坐標構成的平面向量的集合為M。對M中的每一個向量,作與其大小相等且數(shù)量積為零的向量,構成向量集合V。分別在向量集合M、V中各任取一個向量與向量,其滿足的概率是                            (    )

       A.                  B.                    C.                    D.

 

查看答案和解析>>

||=1,||=2,,且,則向量的夾角為(  )

A.30°    B.60°    C.120°   D.150°

 

查看答案和解析>>

A、B、C.D、E五人住進編號為1、2、3、4、5的五個房間,每房間只住一人,則B不住2號房間,且B、C兩人不住編號相鄰房間的住法種數(shù)為(    )

A.24種               B.60種             C.70種             D.72種

查看答案和解析>>

 

一、選擇題:

(1)D     (2)B     (3)C     (4)B     (5)B     (6)A   

(7)C     (8)A     (9)D    (10)B     (11)C    (12)B

 

二、填空題:

(13)2               (14)  (15)200  (16)②③ 

 

三、解答題

17.   (1) 故函數(shù)的定義域是(-1,1). ………… 2分

(2)由,得(R),所以,      ……………  5分

所求反函數(shù)為( R).                …………………  7分

(3) ==-,所以是奇函數(shù).………  12分

 

18. (1)設,則.        …………………  1分

由題設可得解得      ………………… 5分

所以.                                …………………  6分

(2) ,. ……  8分

列表:

 

 

 

                                                     …………………  11分

由表可得:函數(shù)的單調遞增區(qū)間為,       ………………  12分

19.(1)證明:設,且

,且.                    …………………  2分

上是增函數(shù),∴.        …………………  4分

為奇函數(shù),∴,                      

, 即上也是增函數(shù).         ………………  6分

(2)∵函數(shù)上是增函數(shù),且在R上是奇函數(shù),

上是增函數(shù).                       ……………………  7分

于是

 

.        …………  10分

∵當時,的最大值為,

∴當時,不等式恒成立.                         ………………  12分

 

20. ∵AB=x, ∴AD=12-x.                                   ………………1分

,于是.         ………………3分

由勾股定理得   整理得    …………5分

因此的面積 .  ……7分

  得                                ………………8分

.                         ………………10分

當且僅當時,即當時,S有最大值  ……11分

答:當時,的面積有最大值             ………………12分

 

21. (1) h (x)                            …………………5分

   (2) 當x≠1時, h(x)= =x-1++2,                       ………………6分

      若 x > 1時, 則 h (x)≥4,其中等號當 x = 2時成立               ………………8分

若x<1時, 則h (x) ≤ 0,其中等號當 x = 0時成立               ………………10分

∴函數(shù) h (x)的值域是 (-∞,0 ] ∪ { 1 } ∪ [ 4 ,+∞)             ………………12分

 

22. (1)

切線PQ的方程             ………2分

   (2)令y=0得                           ………4分

 

解得 .                         ………6分

又0<t<6, ∴4<t<6,                                            ………7分

g (t)在(m, n)上單調遞減,故(m, n)              ………8分

(3)當在(0,4)上單調遞增,

 

∴P的橫坐標的取值范圍為.                               ………14分

 

 


同步練習冊答案