C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數(shù)滿足,且當(dāng)時,,則當(dāng)時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

1.B  2.D  3.A  4.B  5.C  6.D  7.A  8.B  9.C  10.C

11.2   12.   13.0  14.  15.96

16.解:(1)依題意:,即,又,

∴  ,∴  ,

(2)由三角形是銳角三角形可得,即。

     由正弦定理得∴ 

∴  ,

  ∵   ,∴ 

∴      即。

17.設(shè),則=,,

,又,

.

(2)=,

18解:(1)記數(shù)列的前項和為,則依題有

,故

故數(shù)列的通項為.故,易知,

(2)假設(shè)存在實數(shù),使得當(dāng)時,對任意恒成立,則對任意都成立,,

,有.故存在最大的實數(shù)符合題意.

19. 20. 解:設(shè)該學(xué)生選修甲、乙、丙的概率分別為x、y、z

       依題意得                      

       (1)若函數(shù)R上的偶函數(shù),則=0       

       當(dāng)=0時,表示該學(xué)生選修三門功課或三門功課都沒選.

      

       =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24

       ∴事件A的概率為0.24                                                      

   (2)依題意知的的取值為0和2由(1)所求可知

P(=0)=0.24 P(=2)=1- P(=0)=0.76

的分布列為

0

2

P

0.24

0.76

的數(shù)學(xué)期望為E=0×0.24+2×0.76=1.52                       

20. (1)由題意可知,又,解得,

橢圓的方程為

(2)由(1)得,所以.假設(shè)存在滿足題意的直線,設(shè)的方程為

,代入,得

設(shè),則   ①

,

的方向向量為,

; 當(dāng)時,,即存在這樣的直線;

當(dāng)時,不存在,即不存在這樣的直線 .

21.(1) 必要性 : ,又  ,即

充分性 :設(shè) ,對用數(shù)學(xué)歸納法證明

        當(dāng)時,.假設(shè)

        則,且

,由數(shù)學(xué)歸納法知對所有成立

     (2) 設(shè) ,當(dāng)時,,結(jié)論成立

         當(dāng) 時,

          ,由(1)知,所以  且   

         

         

         

(3) 設(shè) ,當(dāng)時,,結(jié)論成立

 當(dāng)時,由(2)知

  w.w.w.k.s.5.u.c.o.m    


同步練習(xí)冊答案