的條件下.求函數(shù)在上的最大值和最小值; 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)的定義域D={x|x≠0},且滿(mǎn)足對(duì)于任意x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)與f(-1)的值;
(2)判斷函數(shù)的奇偶性并證明;
(3)若x>1時(shí),f(x)>0,求證f(x)在區(qū)間(0,+∞)上是增函數(shù);
(4)在(3)的條件下,若f(4)=1,求不等式f(3x+1)≤2的解集.

查看答案和解析>>

函數(shù)f(x)=x3+ax2+bx+c,曲線(xiàn)y=f(x)上以點(diǎn)P(1,f(1))為切點(diǎn)的切線(xiàn)方程為y=3x+1.
(1)若y=f(x)在x=-2時(shí)有極值,求f (x)的表達(dá)式;
(2)在(1)的條件下,求y=f(x)在[-3,1]上最大值.

查看答案和解析>>

函數(shù)f(x)(x∈R+)滿(mǎn)足下列條件:①f(a)=1(a>1)②f(xm)=mf(x).
(1)求證:f(xy)=f(x)+f(y);
(2)證明:f(x)在(0,+∞)上單調(diào)遞增;
(3)若不等式f(x)+f(3-x)≤2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

函數(shù)f(x)=
1
1+a•2bx
的定義域?yàn)镽,且
lim
n→∞
f(-n)=0(n∈N*)
(Ⅰ)求證:a>0,b<0;
(Ⅱ)若f(1)=
4
5
,且f(x)在[0,1]上的最小值為
1
2
,試求f(x)的解析式;
(Ⅲ)在(Ⅱ)的條件下記Sn=f(1)+f(2)+…+f(n)(n∈N),試比較Sn與n+
1
2n+1
+
1
2
(n∈N*)
的大小并證明你的結(jié)論.

查看答案和解析>>

函數(shù)f(x)=x3+ax2+bx+5,過(guò)曲線(xiàn)y=f(x) 上的點(diǎn)P(1,f(1))的切線(xiàn)斜率為3.
(1)若y=f(x)在x=-2時(shí)有極值,求f(x)的表達(dá)式;
(2)在(1)的條件下,求y=f(x)在[-3,1]上最大值.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

題號(hào)

1

2

3

4

5

6

7

8

9

10

解答

B

D

A

B

D

B

D

C

D

C

二、填空題:本大題共7小題,每小題4分,共28分

11.        負(fù)                                   12.              

13.                                  14.                                

15.       2                                     16.      2125                  

17.                              

三、解答題:本大題共5小題,共72分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

18.解:(1)=,得:=,

即:,      …………………………………………………………3分

  又∵0<,

=.               …………………………………………………………5分

(2)直線(xiàn)方程為:

,點(diǎn)到直線(xiàn)的距離為:

,    …………………………………………………………9分

 ∴,  …………………………………………………………11分

又∵0<,       

 ∴sin>0,cos<0; …………………………………………………………12分

  

 ∴sin-cos=    ……………14分

19.(Ⅰ)證明:連A1B,D1C.

……2分  

連結(jié),則

,故D1E⊥平面AB1F.     ………………………………………5分

(Ⅱ)由(Ⅰ)知,E為棱BC的中點(diǎn).

   ………………9分

(Ⅲ).               ………………………11分

中,

 ………………………14分

20. (Ⅰ)證明:令

,總有恒成立.

,總有恒成立.

故函數(shù)是奇函數(shù).              ………………………………………………5分

(Ⅱ) ,

.…………………………………………8分

……………………………………………………………………………10分

(Ⅲ)

……………………………………………………………………………15分

21.解:(Ⅰ)若為等腰直角

三角形,所以有OA=OF2,即b=c .  ………2分

所以     …………5分

   (Ⅱ)由題知

其中,

 …8分

將B點(diǎn)坐標(biāo)代入,

解得.  ①     ……………………………………………………10分

又由 ② …12分

由①, ②解得,

所以橢圓方程為.     ……………………………………………14分

22.解:  

(Ⅰ)由題意,得

所以,         …………………………………………5分

   (Ⅱ)由(Ⅰ)知,,

 

 

-4

(-4,-2)

-2

1

 

+

0

0

+

 

 

極大值

極小值

 

函數(shù)值

-11

 

13

 

 

4

在[-4,1]上的最大值為13,最小值為-11。     …………………10分

(Ⅲ)

.所以存在,使. ……………15分

 

 


同步練習(xí)冊(cè)答案