13. 14. 查看更多

 

題目列表(包括答案和解析)

(
1
4
)-
1
2
(
4ab-1
)
3
(0.1-2)(a3b-3)
1
2
=
 

查看答案和解析>>

(14分)設(shè)A、B分別為橢圓的左、右頂點(diǎn),()為橢圓上一點(diǎn),橢圓的長(zhǎng)半軸的長(zhǎng)等于焦距.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),若直線AP,BP分別與橢圓相交于異于A、B的點(diǎn)M、N,證明在以MN為直徑的圓內(nèi).

查看答案和解析>>

(14分)已知函數(shù)

(Ⅰ)求的值域;

       (Ⅱ)設(shè),函數(shù).若對(duì)任意,總存在,使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

(14分)設(shè)A、B分別為橢圓的左、右頂點(diǎn),()為橢圓上一點(diǎn),橢圓的長(zhǎng)半軸的長(zhǎng)等于焦距.

  (Ⅰ)求橢圓的方程;

  (Ⅱ)設(shè),若直線AP,BP分別與橢圓相交于異于A、B的點(diǎn)M、N,

求證:為鈍角.

查看答案和解析>>

(14分)已知函數(shù),( x>0).

(I)當(dāng)0<a<b,且f(a)=f(b)時(shí),求證:ab>1;

(II)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請(qǐng)說(shuō)明理由.

(III)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)?[a,b]時(shí),值域?yàn)?[ma,mb]

(m≠0),求m的取值范圍.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

題號(hào)

1

2

3

4

5

6

7

8

9

10

解答

B

D

A

B

D

B

D

C

D

C

二、填空題:本大題共7小題,每小題4分,共28分

11.        負(fù)                                   12.              

13.                                  14.                                

15.       2                                     16.      2125                  

17.                              

三、解答題:本大題共5小題,共72分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

18.解:(1)=,得:=,

即:,      …………………………………………………………3分

  又∵0<,

=.               …………………………………………………………5分

(2)直線方程為:

,點(diǎn)到直線的距離為:

,    …………………………………………………………9分

 ∴,  …………………………………………………………11分

又∵0<,       

 ∴sin>0,cos<0; …………………………………………………………12分

  

 ∴sin-cos=    ……………14分

19.(Ⅰ)證明:連A1B,D1C.

……2分  

連結(jié),則

,故D1E⊥平面AB1F.     ………………………………………5分

(Ⅱ)由(Ⅰ)知,E為棱BC的中點(diǎn).

   ………………9分

(Ⅲ).               ………………………11分

中,

 ………………………14分

20. (Ⅰ)證明:令

,總有恒成立.

,總有恒成立.

故函數(shù)是奇函數(shù).              ………………………………………………5分

(Ⅱ) ,

.…………………………………………8分

……………………………………………………………………………10分

(Ⅲ)

……………………………………………………………………………15分

21.解:(Ⅰ)若為等腰直角

三角形,所以有OA=OF2,即b=c .  ………2分

所以     …………5分

   (Ⅱ)由題知

其中,

 …8分

將B點(diǎn)坐標(biāo)代入,

解得. 、佟     10分

又由 ② …12分

由①, ②解得,

所以橢圓方程為.     ……………………………………………14分

22.解:  

(Ⅰ)由題意,得

所以,         …………………………………………5分

   (Ⅱ)由(Ⅰ)知,,

 

 

-4

(-4,-2)

-2

1

 

+

0

0

+

 

 

極大值

極小值

 

函數(shù)值

-11

 

13

 

 

4

在[-4,1]上的最大值為13,最小值為-11。     …………………10分

(Ⅲ)

.所以存在,使. ……………15分

 

 


同步練習(xí)冊(cè)答案