設(shè)銳角三角形ABC的內(nèi)角A.B.C的對(duì)邊分別為a.b.c..(Ⅰ)求B的大小, 查看更多

 

題目列表(包括答案和解析)

設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,a=2bsinA
(Ⅰ)求B的大;
(Ⅱ)求cosA+sinC的取值范圍.

查看答案和解析>>

設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,a=2bsinA
(Ⅰ)求B的大。
(Ⅱ)若a=3
3
,c=5,求b.

查看答案和解析>>

設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a=
3
b
sinB
=2

(1)求A的大小;
(2)求
a2+b2-c2
ab
+2cosB
的取值范圍.

查看答案和解析>>

設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(2a-c)cosB.
(Ⅰ)求B的大;
(Ⅱ)求sinA+sinC的取值范圍.

查看答案和解析>>

設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,
m
=(
3
a,b)
,
n
=(2sinA,1)
,且
m
n
共線.
(Ⅰ)求B的大小;
(Ⅱ)若△ABC的面積是2
3
,a+c=6,求b.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

答案

D

A

B

C

B

B

B

D

二、填空題

9.1;      10. ;   11.12;    12.;    13.;   14.

三、解答題

15.解:(Ⅰ)由,根據(jù)正弦定理得,

所以,…………………………………………………………………………………………4分

為銳角三角形得.                 …………………………………………7分

(Ⅱ)根據(jù)余弦定理,得.           ………10分

所以,.                ……………………………………………………………12分

 

16.解:(1)由題意可知

當(dāng)時(shí), .                   ……3分

當(dāng)時(shí),,亦滿足上式.                            ……5分

∴數(shù)列的通項(xiàng)公式為).                            ……6分

(2)由(1)可知,                                                ……7分

∴數(shù)列是以首項(xiàng)為,公比為的等比數(shù)列,                           ……9分

.                                   ……12分

 

17.

 

……5分

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

18.解:(1)由   …………………2分

, ……4分

,

 

函數(shù)的單調(diào)區(qū)間如下表:

(-¥,-

(-,1)

1

(1,+¥)

0

0

­

極大值

¯

極小值

­

所以函數(shù)的遞增區(qū)間是(-¥,-)與(1,+¥),遞減區(qū)間是(-,1)。      …9分

(2),

當(dāng)時(shí),為極大值,而,則為最大值。

要使恒成立,只需;

解得。                                        ……………………14分

19.解:(1)設(shè)所求直線的斜率為,其方程為,代入橢圓方程并化簡得:

                …………………………2分

        設(shè)直線l與橢圓交于P1x1y1)、P2x2y2),則,

因?yàn)椋?,2)是直線l被橢圓所截得的線段的中點(diǎn),則,

,解得。         …………………………………………6分

由點(diǎn)斜式可得l的方程為x+2y-8=0.               ………………………………………8分

(2)由(1)知,     ………………………10分

       ……………14分

 

 

 

 

20. 解:設(shè)AN的長為x米(x >2)

             ∵,∴|AM|=

∴SAMPN=|AN|•|AM|=         …………………………………………………………4分

(1)由SAMPN > 32 得  > 32 ,

         ∵x >2,∴,即(3x-8)(x-8)> 0

         ∴         即AN長的取值范圍是……………………………8分

(2)令y=,則y′= ……………………………………… 10分

∵當(dāng),y′< 0,∴函數(shù)y=上為單調(diào)遞減函數(shù),

∴當(dāng)x=3時(shí)y=取得最大值,即(平方米)

此時(shí)|AN|=3米,|AM|=米      ……………………………………………………… 14分

 

 

 


同步練習(xí)冊(cè)答案