(Ⅰ)若在取得極值.求b的值, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分分)某學校高三年級有學生1000名,經調查研究,其中750名同學經常參加體育鍛煉(稱為A類同學),另外250名同學不經常參加體育鍛煉(稱為B類同學),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該年級的學生中共抽查100名同學.
(Ⅰ)求甲、乙兩同學都被抽到的概率,其中甲為A類同學,乙為B類同學;
(Ⅱ) 測得該年級所抽查的100名同學身高(單位:厘米) 頻率分布直方圖如右圖:
(ⅰ) 統(tǒng)計方法中,同一組數(shù)據常用該組區(qū)間的中點值(例如區(qū)間的中點值為165)作為代表.據此,計算這100名學生身高數(shù)據的期望及標準差(精確到0.1);
(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,據此,估計該年級身高在范圍中的學生的人數(shù).
(Ⅲ) 如果以身高達170cm作為達標的標準,對抽取的100名學生,得到下列聯(lián)表:
體育鍛煉與身高達標2×2列聯(lián)表

 
身高達標
身高不達標
總計
積極參加體育鍛煉
40
 
 
不積極參加體育鍛煉
 
15
 
總計
 
 
100
(ⅰ)完成上表;
(ⅱ)請問有多大的把握認為體育鍛煉與身高達標有關系?
參考公式:K=,參考數(shù)據:
P(Kk)
0.40
0.25
0.15
0.10
0.05
0.025
k
0.708
1.323
2.072
2.706
3.841
5.024

查看答案和解析>>

(本小題滿分分)某學校高三年級有學生1000名,經調查研究,其中750名同學經常參加體育鍛煉(稱為A類同學),另外250名同學不經常參加體育鍛煉(稱為B類同學),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該年級的學生中共抽查100名同學.
(Ⅰ)求甲、乙兩同學都被抽到的概率,其中甲為A類同學,乙為B類同學;
(Ⅱ) 測得該年級所抽查的100名同學身高(單位:厘米) 頻率分布直方圖如右圖:
(ⅰ) 統(tǒng)計方法中,同一組數(shù)據常用該組區(qū)間的中點值(例如區(qū)間的中點值為165)作為代表.據此,計算這100名學生身高數(shù)據的期望及標準差(精確到0.1);
(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,據此,估計該年級身高在范圍中的學生的人數(shù).
(Ⅲ) 如果以身高達170cm作為達標的標準,對抽取的100名學生,得到下列聯(lián)表:
體育鍛煉與身高達標2×2列聯(lián)表
 
身高達標
身高不達標
總計
積極參加體育鍛煉
40
 
 
不積極參加體育鍛煉
 
15
 
總計
 
 
100
(ⅰ)完成上表;
(ⅱ)請問有多大的把握認為體育鍛煉與身高達標有關系?
參考公式:K=,參考數(shù)據:
P(Kk)
0.40
0.25
0.15
0.10
0.05
0.025
k
0.708
1.323
2.072
2.706
3.841
5.024

查看答案和解析>>

已知函數(shù)處取得極值,在x=2處的切線平行于向量

(Ⅰ)求a,b的值;

(Ⅱ)求的單調區(qū)間;

(Ⅲ)是否存在正整數(shù)m,使得方程在區(qū)間(m,m+1)內有且只有兩個不等實根?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

已知函數(shù)

(Ⅰ)若是增函數(shù),求b的取值范圍;

(Ⅱ)若時取得極值,且時,恒成立,求c的取值范圍.

 

查看答案和解析>>

已知函數(shù)。
(Ⅰ)若是增函數(shù),求b的取值范圍;
(Ⅱ)若時取得極值,且時,恒成立,求c的取值范圍.

查看答案和解析>>

一、1、D    2、A   3、B    4、D    5、B    6、C   7、A    8、D   9、A   10、C

二、11、二     12、2cm     13、1     14、49720,    15、5www.ks5 u.com

三、16、解:

(1)……3分

,得……………………………5分

(2)由(1)得………7分

時,的最大值為…………………………………9分

,得值為集合為………………………10分

(3)由所以時,為所求….12分

 

 

17、解:www.ks5 u.com

(1)

   數(shù)列的各項均為正數(shù),

   即,所以數(shù)列是以2為公比的等比數(shù)列……………………3分

的等差中項,

數(shù)列的通項公式…………………………………………………………6分

(2)由(1)及,…………………………………………8分

    

                        ①

      ②

②-①得,

…10分

要使成立,只需成立,即

使成立的正整數(shù)n的最小值為5…………………………………12分

18、解:(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

“兩球恰好顏色不同”共2×4+4×2=16種可能,………………4分

解法二:“有放回摸取”可看作獨立重復實驗   每次摸出一球得白球的概率為

 “有放回摸兩次,顏色不同”的概率為………………………4分

(2)設摸得白球的個數(shù)為,依題意得

……

…………………………………………………………………………………………10分

     ……………………………………………………12分

19、證明:(1)平面 平面平面,

平面 側面側面……………………4分

(2)的中點, 

側面側面 從而  故的長就是點到側面的距離在等腰中,……………………………………8分

說明:亦可利用向量的方法求得

(3)幾何方法:可以證明就是二面角

平面角……………………………………10分

從而………………13分

亦可利用等積轉換算出到平面的高,

從而得出二面角的平面角為……13分

說明:也可以用向量法:平面的法向量為

平面的法向量為………………10分

二面角的平面角為

20、解(1)設雙曲線方程為

由已知得,再由,得

故雙曲線的方程為.…………………………………………5分

(2)將代入

 由直線與雙曲線交與不同的兩點得

 即.   ①   設,則…………………8分

,由

.…………………………11分

于是,即解此不等式得    ②

由①+②得

故的取值范圍為…………………………………13分

21、解:(1)由題設知,又,得……………2分

       (2)…………………………………………………3分

        由題設知

  …………………………………………………4分

(當時,取最小值)……………………4分

時,當且僅當   …………………7分

(3)時,方程變形為

 令………9分

,得,

,得………………………………11分

又因為

取得唯一的極小值

又當時,的值,當時,

的值,函數(shù)草圖如右

兩圖像由公共點時,方程有解,

的最小值為,………………………………………………13分

 

 

 

 

 

 


同步練習冊答案