(1)當(dāng)?shù)牧泓c, 查看更多

 

題目列表(包括答案和解析)

某零售商店近五個月的銷售額和利潤額資料如下表:
商店名稱 A B C D E
銷售額y(千萬元) 3 5 6 7 9
利潤額y(百萬元) 2 3 3 4 5
(1)畫出散點圖,觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;
(2)用最小二乘法計算利潤額y關(guān)于銷售額x的回歸直線方程;
(3)當(dāng)銷售額為4(千萬元)時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).(參考公式
b
=
n
i=1
(xiyi)-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
a
=
.
y
-
b
.
x

查看答案和解析>>

某零售店近五個月的銷售額和利潤額資料如下表:

商店名稱

A

B

C

D

E

銷售額x/千萬

3

5

6

7

9

利潤額y/百萬元

2

3

3

4

5

(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;

(2)用最小二乘法計算利潤額y關(guān)于銷售額x的回歸直線方程;

(3)當(dāng)銷售額為4(千萬元)時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).

查看答案和解析>>

某零售商店近五個月的銷售額和利潤額資料如下表:
商店名稱ABCDE
銷售額y(千萬元)35679
利潤額y(百萬元)23345
(1)畫出散點圖,觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;
(2)用最小二乘法計算利潤額y關(guān)于銷售額x的回歸直線方程;
(3)當(dāng)銷售額為4(千萬元)時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).(參考公式

查看答案和解析>>

試用適當(dāng)?shù)姆椒ū硎鞠铝屑?

(1)24的正約數(shù);

(2)數(shù)軸上與原點的距離小于1的所有點;

(3)平面直角坐標(biāo)系中,Ⅰ、Ⅲ象限的角平分線上的所有點;

(4)所有非零偶數(shù);

(5)所有被3除余數(shù)是1的數(shù).

查看答案和解析>>

已知非零向量
OA
、
OB
、
OC
OD
滿足:
OA
OB
OC
OD
(α,β,γ∈R)
,B、C、D為不共線三點,給出下列命題:
①若α=
3
2
,β=
1
2
,γ=-1
,則A、B、C、D四點在同一平面上;
②當(dāng)α>0,β>0,γ=
2
時,若|
OA
|=
3
,|
OB
|=|
OC
|=|
OD
|=1
,
OB
,
OC
>=
6
,
OD
OB
>=<
OD
,
OC
>=
π
2
,則α+β的最大值為
6
-
2

③已知正項等差數(shù)列an(n∈N*),若α=a2,β=a2009,γ=0,且A、B、C三點共線,但O點不在直線BC上,則
1
a3
+
4
a2008
的最小值為9;
④若α+β=1(αβ≠0),γ=0,則A、B、C三點共線且A分
BC
所成的比λ一定為
α
β

其中你認(rèn)為正確的所有命題的序號是
 

查看答案和解析>>

 

一、選擇題:本大題共有8個小題,每小題5分,共40分;在每個小題給出的四個選項中有且僅有一個是符合題目要求的。

1―8 BDABADBC

二、填空題:本大題共有6個小題,每小題5分,共30分;請把答案寫在相應(yīng)的位置上。

9.5    10.    11.7    12.    13.    14.

三、解答題:本大題共6個小題,共80分;解答應(yīng)寫出文字說明,證明過程或演算步驟。

15.(本題滿分13分)

解:(1)

   (2)

   

16.(本題滿分13分)

解:  用A,B,C分別表示事件甲、乙、丙面試合格.

由題意知A,B,C相互獨(dú)立,且

P(A)=P(B)=P(C)=.

   (Ⅰ)至少有1人面試合格的概率是

  …………………6分

   (2)沒有人簽約的概率為

  ………………13分

17.(本題滿分13分)

解法1:(1)連結(jié)A1B,則D1E在側(cè)面ABB1A1上的射影是A1B,

又∵A1B⊥AB1,

連結(jié)DE,

∵D1E在底面ABCD上的射影是DE,E、F均為中點,

∴DE⊥AF,

∴D1E⊥AF

∵AB1∩AF=A

∴D1E⊥平面AB1F   …………………6分

   (2)∵C1C⊥平面EFA,連結(jié)AC交EF于H,

則AH⊥EF,

連結(jié)C1H,則C1H在底面ABCD上的射影是CH,

∴C1H⊥EF,

∴∠C1HA為二在角C1―EF―A的平面角,它是∠C1HC的鄰補(bǔ)角。

解法2:(1)以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系。

  •    (2)由已知得為平面EFA的一個法向量,

    ∵二面角C1―EF―A的平面角為鈍角,

    ∴二面角C1―EF―A的余弦值為   ………………13分

    18.(本題滿分13分)

    解:(1)

       (2)當(dāng)

       (3)令

         ①

         ②

    ①―②得   ………………13分

    19.(本題滿分14分)

    解:(1)由題意

      ………………3分

       (2)設(shè)此最小值為

       (i)若區(qū)間[1,2]上的增函數(shù),

       (ii)若上是增函數(shù);

    當(dāng)上是減函數(shù);

    ①當(dāng);

    ②當(dāng);

    ③當(dāng)

    綜上所述,所求函數(shù)的最小值

       ………………14分

    20.(本題滿分14分)

    解:(1)設(shè)橢圓C的方程:

       (2)由

            ①

    由①式得

     

     


    同步練習(xí)冊答案