設(shè)函數(shù)是定義在R上.周期為3的奇函數(shù)若.則 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)是定義在R上以3為周期的奇函數(shù),若,,

 

則a的取值范圍是__________________________.

 

查看答案和解析>>

設(shè)函數(shù)是定義在R上的奇函數(shù),若的最小正周期為3,且,    的取值范圍是(    )

 A. B.

 C.     D. 

 

查看答案和解析>>

設(shè)函數(shù)是定義在R上的奇函數(shù),若的最小正周期為3,且,    的取值范圍是(    )

 A. B.

 C.     D. 

 

查看答案和解析>>

 

設(shè)函數(shù)是定義在R上的偶函數(shù),且對于任意的恒有,已知當

時,.則

①2是的周期;

②函數(shù)在(2,3)上是增函數(shù);

③函數(shù)的最大值為1,最小值為0;

④直線是函數(shù)圖象的一條對稱軸.

其中所有正確命題的序號是____

 

查看答案和解析>>

 

設(shè)函數(shù)是定義在R上的偶函數(shù),且對于任意的恒有,已知當

時,.則

①2是的周期;

②函數(shù)在(2,3)上是增函數(shù);

③函數(shù)的最大值為1,最小值為0;

④直線是函數(shù)圖象的一條對稱軸.

其中所有正確命題的序號是____

 

查看答案和解析>>

一,選擇題:           

 D C B CC,     CA BC B

二、填空題:

(11),     -3,         (12), 27      (13),

(14), .       (15),   -26,14,65

三、解答題:

  16,   由已知得;所以解集:;

17, (1)由題意,=1又a>0,所以a=1.

      (2)g(x)=,當時,,無遞增區(qū)間;當x<1時,,它的遞增區(qū)間是

    綜上知:的單調(diào)遞增區(qū)間是

18, (1)當0<t≤10時,

是增函數(shù),且f(10)=240

當20<t≤40時,是減函數(shù),且f(20)=240  所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當0<t≤10時,令,則t=4  當20<t≤40時,令,則t≈28.57 

則學(xué)生注意力在180以上所持續(xù)的時間28.57-4=24.57>24

從而教師可以第4分鐘至第28.57分鐘這個時間段內(nèi)將題講完。

19, (I)……1分

       根據(jù)題意,                                                 …………4分

       解得.                                                            …………7分

   (II)因為……7分

   (i)時,函數(shù)無最大值,

           不合題意,舍去.                                                                  …………11分

   (ii)時,根據(jù)題意得

          

       解之得                                                                      …………13分

       為正整數(shù),=3或4.                                                       …………14分

 

20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為

    <noscript id="x7ezi"></noscript>

    f(x)=

    loga[2-(x-2k)],x∈[2k,2k+1].

    (2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當x∈[0,1]時f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

    ∴[f(x)]max= f(0)= =,∴a=4.

    當x∈[-1,1]時,由f(x)>

        得

    f(x)是以2為周期的周期函數(shù),

    f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

    21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

    又8x f(x)4(x2+1) 對恒成立,∴a=c=2   f(x)=2(x+1)2

    (2)∵g(x)==,D={x?x-1  }

    X1=,x2=,x3=-,x4=-1,∴M={,,-,-1}

     


    同步練習(xí)冊答案