于是與平面所成角即 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

(Ⅱ)若為側(cè)棱PB的中點,求直線AE與底面所成角的正弦值.

【解析】第一問中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二問中結(jié)合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

 (Ⅰ) 證明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已證平面PBC,所以,即,

,

于是

所以直線AE與底面ABC 所成角的正弦值為

 

查看答案和解析>>

下列說法錯誤的是(    )

A.過二面角的棱上某一特殊點,分別在兩個半平面內(nèi)引垂直于棱的射線,則這兩條射線所成的角即為二面角的平面角

B.和二面角的棱垂直的平面與二面角的兩個半平面的交線所成的角即為二面角的平面角

C.在二面角的一個面內(nèi)引棱的垂線,該垂線與其在另一面內(nèi)的射影所成的角是二面角的平面角

D.二面角的平面角可以是一個銳角、一個直角或一個鈍角

查看答案和解析>>

下列說法錯誤的是(    )

A.過二面角的棱上某一特殊點,分別在兩個半平面內(nèi)引垂直于棱的射線,則這兩條射線所成的角即為二面角的平面角

B.和二面角的棱垂直的平面與二面角的兩個半平面的交線所成的角即為二面角的平面角

C.在二面角的一個面內(nèi)引棱的垂線,該垂線與其在另一面內(nèi)的射影所成的角是二面角的平面角

D.二面角的平面角可以是一個銳角、一個直角或一個鈍角

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1截面A1EC⊥側(cè)面AC1.

(Ⅰ)求證:BE=EB1;

(Ⅱ)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).

注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).

(Ⅰ)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.

① ∵                                     

 ∴EG⊥側(cè)面AC1;取AC的中點F,連結(jié)BF,FG,由AB=BC得BF⊥AC,

② ∵                             

 ∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個平面,交側(cè)面AC1于FG.

③ ∵                      

 ∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,

④ ∵                            

 ∴FG∥AA1,△AA1C∽△FGC,

⑤ ∵                    

,故

查看答案和解析>>


同步練習(xí)冊答案