題目列表(包括答案和解析)
(本題13分)已知函數(shù)
(1)已知一直線經(jīng)過原點(diǎn)且與曲線相切,求的直線方程;
(2)若關(guān)于的方程有兩個不等的實(shí)根,求實(shí)數(shù)的取值范圍。
給出下列四個結(jié)論:①函數(shù)在其定義域內(nèi)是增函數(shù);②函數(shù)的最小正周期是2π;③函數(shù)的圖象關(guān)于直線對稱;④函數(shù)是偶函數(shù).其中正確結(jié)論的序號是 .
已知命題“若函數(shù)在是增函數(shù),則”,則下列結(jié)論正確的是
A.否命題是“若函數(shù)在是減函數(shù),則”,是真命題
B. 逆命題是“若,則函數(shù)在是增函數(shù)”, 是假命題
C. 逆否命題是“若,則函數(shù)在是減函數(shù)”, 是真命題
D. 逆否命題是“若,則函數(shù)在不是增函數(shù)”, 是真命題
第二節(jié):書面表達(dá)(滿分25分)
假如你叫王麗,是一位高中生。請你用英語給報社寫一封信,反映如下情況并談?wù)勀愕牡南敕ǎ?/p>
1. 現(xiàn)在有很多學(xué)生使用手機(jī)一是認(rèn)為這是種時髦二是認(rèn)為便于跟家人和朋友聯(lián)系。
2. 一些學(xué)生把手機(jī)帶進(jìn)教室,在課堂上經(jīng)常聽見手機(jī)的鈴聲。破壞課堂紀(jì)律。
3. 有的同學(xué)還在課堂上發(fā)短信息,浪費(fèi)寶貴的時間。
4. 建議:教室是學(xué)習(xí)的地方,需要安靜;學(xué)生不應(yīng)該在教室中使用手機(jī);應(yīng)該集中注意力學(xué)習(xí)。(附:自己再想一條建議)
注意:
1. 信的開頭和結(jié)尾已給出;
2. 字?jǐn)?shù): 100 左右
3. 參考詞匯 :集中(注意力) concentrate on
Dear Editor ,
I’m a senior high student .
假如你叫王麗,是一位高中生。請你用英語給報社寫一封信,反映如下情況并談?wù)勀愕南敕ǎ?/p>
現(xiàn)在有很多學(xué)生使用手機(jī)。一是認(rèn)為這是時髦,二是認(rèn)為便于跟朋友和家人聯(lián)系。
一些學(xué)生把手機(jī)帶進(jìn)教室,在課堂上經(jīng)常聽見手機(jī)的鈴聲。破壞課堂紀(jì)律。
有的同學(xué)還在課堂上發(fā)短信,浪費(fèi)寶貴的時間。
建議:教室是學(xué)習(xí)的地方,需要安靜;學(xué)生不應(yīng)該在教室里使用手機(jī);應(yīng)該集中注意力學(xué)習(xí)。(附:自己想一條建議)
注意:1.信的開頭已給出;
2.字?jǐn)?shù):100左右;
3.參考詞匯:集中(注意力)concentrate on
Dear Editor,
I’m a senior high student.………………………
1.解析:,故選A。
2.解析:∵
,
故選B。
3.解析:由,得,此時,所以,,故選C。
4.解析:顯然,若與共線,則與共線;若與共線,則,即,得,∴與共線,∴與共線是與共線的充要條件,故選C。
5.解析:設(shè)公差為,由題意得,;,解得或,故選C。
6.解析:∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.
7.解析:∵、為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)在是增函數(shù),∴,故恒成立的不等式是①③④。故選C.
8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。
9.解析:∵
,此函數(shù)的最小值為,故選C。
10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。
11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A
12.解析:如圖,①當(dāng)或時,圓面被分成2塊,涂色方法有20種;②當(dāng)或時,圓面被分成3塊,涂色方法有60種;
③當(dāng)時,圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。
13.解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過點(diǎn)時,取得最大值5。
14.解析:∵,∴時,,又時,滿足上式,因此,,
∴。
15.解析:設(shè)正四面體的棱長為,連,取的中點(diǎn),連,∵為的中點(diǎn),∴∥,∴或其補(bǔ)角為與所成角,∵,,∴,∴,又∵,∴,∴與所成角的余弦值為。
16.解析:∵,∴,∵點(diǎn)為的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對稱性可知,點(diǎn)為拋物線上關(guān)于軸對稱的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量與的夾角為。
17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分
∴,,………4分
(Ⅱ)∵,,∴,∴,………………………6分
又∵,∴,∴,………………………8分
∴!10分
18.解析:(Ⅰ)∵,∴;……………………理3文4分
(Ⅱ)∵三科會考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分
(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評為三好學(xué)生的概率為!12分
(理)∵,,,!9分
∴的分布列如下表:
0
1
2
3
∴的數(shù)學(xué)期望!12分
19.(12分)解析:(Ⅰ)時,
,,
由得, 或 ………3分
+
0
-
0
+
遞增
極大值
遞減
極小值
遞增
, ………………………6分
(Ⅱ)在定義域上是增函數(shù),
對恒成立,即
………………………9分
又(當(dāng)且僅當(dāng)時,)
………………………4分
20.解析:(Ⅰ)∵∥,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分
(Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分
,,∴,又∵平面,,∴,∴二面角的正切值的大小為!8分
(Ⅲ)過點(diǎn)做∥,交于點(diǎn),∵平面,∴為在平面內(nèi)的射影,∴為與平面所成的角,………………………10分
∵,∴,又∵∥,∴和與平面所成的角相等,∴與平面所成角的正切值為。………………………12分
解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點(diǎn)的坐標(biāo)分別是,,,∴,,設(shè),∵平面,∴,∴,取,∴,∴。………………………4分
(Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分
(Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分
21.(Ⅰ) 解析:如圖,設(shè)右準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com