已知向量.其中.記函數(shù).已知的最小正周期為. 查看更多

 

題目列表(包括答案和解析)

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
,若f(x)的最小正周期為π
(Ⅰ)求ω;
(Ⅱ)當0<x≤
π
3
時,求f(x)的值域.

查看答案和解析>>

已知向量
m
=(x2,y-cx)
,
n
=(1,x+b)
,
m
n
,(x,y,b,c∈R),且把其中x,y所滿足的關系式記為y=f(x),若f′(x)為f(x)的導函數(shù),F(xiàn)(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).
(Ⅰ)求
b
a
和c的值;
(Ⅱ)若函數(shù)f(x)在[
a
2
a2]
上單調(diào)遞減,求b的取值范圍;
(Ⅲ)當a=2時,設0<t<4且t≠2,曲線y=f(x)在點A(t,f(t))處的切線與曲線y=f(x)相交于點B(m,f(m))(A,B不重合),直線x=t與y=f(m)相交于點C,△ABC的面積為S,試用t表示△ABC的面積S(t),若P為S(t)上一動點,D(4,0),求直線PD的斜率的取值范圍.

查看答案和解析>>

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
-
1
2
已知f(x)的最小正周期為π.
(1)求ω;
(2)求f(x)的單調(diào)區(qū)間;對稱軸方程;對稱中心坐標;
(3)當0<x≤
π
3
時,試求f(x)的最值.

查看答案和解析>>

已知A、B、C是直線l上的不同的三點,O是外一點,則向量
OA
、
OB
OC
滿足:
OA
OB
OC
,其中λ+μ=1.
(1)若A、B、C三點共線且有
OA
-(3x+1)•
OB
-(
3
2+3x
-y)•
OC
=
0
成立.記y=f(x),求函數(shù)y=f(x)的解析式;
(2)若對任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f(x)-3x]>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

已知向量a=(cosωx,sinωx),b=(cosωx,
3
cosωx)
,其中0<ω<2.記f(x)=a•b.
(1)若f(x)的最小正周期為2π,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)圖象的一條對稱軸的方程為x=
π
6
,求ω的值.

查看答案和解析>>


同步練習冊答案