因為B, 所以=. 查看更多

 

題目列表(包括答案和解析)

若a>b>c,則
1
a-b
+
1
b-c
4
a-c

證明:因為(a-c)(
1
a-b
+
1
b-c
)
=(a-b+b-c)(
1
a-b
+
1
b-c
)
=2+
b-c
a-b
+
a-b
b-c

∵a>b>c∴a-b>0,b-c>0;
b-c
a-b
+
a-b
b-c
≥2
b-c
a-b
a-b
b-c
=2
∴2+
b-c
a-b
+
a-b
b-c
≥4∴(a-c)(
1
a-b
+
1
b-c
)
≥4
     因為a>c所以a-c>0
     所以
1
a-b
+
1
b-c
4
a-c

類比上述命題及證明思路,回答以下問題:
①若a>b>c>d,比較
1
a-b
+
1
b-c
+
1
c-d
9
a-d
的大小,并證明你的猜想;
②若a>b>c>d>e,且
1
a-b
+
1
b-c
+
1
c-d
+
1
d-e
m
a-e
恒成立,試猜想m的最大值,并寫出猜想過程,不要求證明.

查看答案和解析>>

下列說法,正確的是( 。

查看答案和解析>>

我們把形如y=
b
|x|-a
(a>0,b>0)
的函數(shù)因其圖象類似于漢字“囧”字,故生動地稱為“囧函數(shù)”,并把其與y軸的交點關(guān)于原點的對稱點稱為“囧點”,以“囧點”為圓心凡是與“囧函數(shù)”有公共點的圓,皆稱之為“囧圓”,則當(dāng)a=1,b=1時,所有的“囧圓”中,面積的最小值為( 。
A、2πB、3πC、4πD、12π

查看答案和解析>>

以下說法,正確的個數(shù)為:(   )
①公安人員由罪犯的腳印的尺寸估計罪犯的身高情況,所運用的是類比推理.
②農(nóng)諺“瑞雪兆豐年”是通過歸納推理得到的.
③由平面幾何中圓的一些性質(zhì),推測出球的某些性質(zhì)這是運用的類比推理.
④個位是5的整數(shù)是5的倍數(shù),2375的個位是5,因此2375是5的倍數(shù),這是運用的演繹推理.

A.0 B.2 C.3 D.4 

查看答案和解析>>

請先閱讀:
設(shè)平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夾角為θ,
因為
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a
2
1
+
a
2
2
×
b
2
1
+
b
2
2
,
當(dāng)且僅當(dāng)θ=0時,等號成立.
(I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a
2
1
+
a
2
2
+
a
2
3
)(
b
2
1
+
b
2
2
+
b
2
3
)
成立;
(II)試求函數(shù)y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>


同步練習(xí)冊答案