(Ⅰ)求動點的軌跡的方程, 查看更多

 

題目列表(包括答案和解析)


(1)求動點的軌跡的方程;
(2)已知圓過定點,圓心在軌跡上運動,且圓軸交于、兩點,設(shè),,求的最大值.

查看答案和解析>>

已知動點的軌跡是曲線,滿足點到點的距離與它到直線的距離之比為常數(shù),又點在曲線上.

(1)求曲線的方程;

(2)已知直線與曲線交于不同的兩點,求實數(shù)的取值范圍.

查看答案和解析>>

已知動點的軌跡是曲線,滿足點到點的距離與它到直線的距離之比為常數(shù),又點在曲線上.
(1)求曲線的方程;
(2)已知直線與曲線交于不同的兩點,求實數(shù)的取值范圍.

查看答案和解析>>

動點P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.
(1)求點P的軌跡C的方程;
(2)過點Q(0,-1)作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.

查看答案和解析>>

動點P與點F(1,0)的距離和它到直線l:x=-1的距離相等,記點P的軌跡為曲線C1.圓C2的圓心T是曲線C1上的動點,圓C2與y軸交于M,N兩點,且|MN|=4.
(1)求曲線C1的方程;
(2)設(shè)點A(a,0)(a>2),若點A到點T的最短距離為a-1,試判斷直線l與圓C2的位置關(guān)系,并說明理由.

查看答案和解析>>

一、選擇題:1―5 BDACB  6―12ABACA CB

二、填空題13.2   14.  15.16.①⑧⑤ 或①③⑧ 或④⑧①或④①⑧

17.(1)解:在中  

                                                 2分

    4分

      …….6分

   (2)                            10分

18.解:(1)在正方體中,

、、分別為、、中點

  即平面

 到平面的距離即到平面的距離.               3分

    在平面中,連結(jié)

之距為                    

因此到平面的距離為……………6分

   (2)在四面體中,

    又底面三角形是正三角形,

    設(shè)之距為

      故與平面所成角的正  …………12分

另解向量法

19.解:(Ⅰ)設(shè)、兩項技術(shù)指標(biāo)達標(biāo)的概率分別為

由題意得:                  …………..…………..4分

  解得:,∴.   即,一個零件經(jīng)過檢測為合格品的概率為. ………. ……………………………….8分                     

(Ⅱ)任意抽出5個零件進行檢查,其中至多3個零件是合格品的概率為

 ………………..12分                               

20.解:(1)

   ………………4分

   (2)由

        …………8分

   (3)   

21.解:(1)

                  2分

-1

(x)

-

0

+

0

-

(x)

極小值0

極大值

                                      6分

   (2)

      

                    8分

………….12分

22.解法一:(Ⅰ)設(shè)點,則,由得:

,化簡得.……………….3分

(Ⅱ)(1)設(shè)直線的方程為:

設(shè),,又

聯(lián)立方程組,消去得:,

……………………………………6分

,得:

,,整理得:

,,

.……………………………………………………………9分

解法二:(Ⅰ)由得:

,

,

所以點的軌跡是拋物線,由題意,軌跡的方程為:

(Ⅱ)(1)由已知,,得

則:.…………①

過點分別作準(zhǔn)線的垂線,垂足分別為,

則有:.…………②

所以點的軌跡是拋物線,由題意,軌跡的方程為:

(Ⅱ)(1)由已知,,得

則:.…………①

過點分別作準(zhǔn)線的垂線,垂足分別為,

則有:.…………②

由①②得:,即

(Ⅱ)(2)解:由解法一,

當(dāng)且僅當(dāng),即時等號成立,所以最小值為.…………..12分


同步練習(xí)冊答案