(Ⅰ)求動點的軌跡C的方程, 查看更多

 

題目列表(包括答案和解析)

動點P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.
(1)求點P的軌跡C的方程;
(2)過點Q(0,-1)作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.

查看答案和解析>>

動圓C的方程為x2+y2+2ax-4ay+5=0.
(1)若a=2,且直線y=3x與圓C交于A,B兩點,求弦長|AB|;
(2)求動圓圓心C的軌跡方程;
(3)若直線y=kx-2k與動圓圓心C的軌跡有公共點,求k的取值范圍.

查看答案和解析>>

動點M的坐標(x,y)在其運動過程中總滿足關(guān)系式
(x-
5
)
2
+y2
+
(x+
5
)
2
+y2
=6

(1)點M的軌跡是什么曲線?請寫出它的標準方程;
(2)已知定點T(t,0)(0<t<3),若|MT|的最小值為1,求t的值;
(3)設直線l不經(jīng)過原點O,與動點M的軌跡相交于A,B兩點,點G為線段AB的中點,直線OG與該軌跡相交于C,D兩點,若直線AB,CD,AC,AD,DB,BC的斜率分別為k1,k2,k3,k4,k5,k6,求證:k1•k2=k3•k4=k5•k6

查看答案和解析>>

動點M(x,y)到定點F(-1,0)的距離與到y(tǒng)軸的距離之差為1.
(I)求動點M的軌跡C的方程;
(II)過點Q(-3,0)的直線l與曲線C交于A、B兩點,問直線x=3上是否存在點P,使得△PAB是等邊三角形?若存在,求出所有的點P;若不存在,請說明理由.

查看答案和解析>>

動點P與兩個定點A(-6,0),B(6,0)連線的斜率之積為-
13
,P點軌跡為C,
(1)求曲線C的方程;
(2)直線l過M(-2,2)與C交于E,G兩點,且線段EG中點是M,求l方程.

查看答案和解析>>

<label id="bwxsd"></label>

        2009.4

         

        1-10.CDABB   CDBDA

        11.       12. 4        13.        14.       15.  

        16.   17.

        18.解:(Ⅰ)由題意,有

        .…………………………5分

        ,得

        ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

        (Ⅱ)由,得

        .           ……………………………………………… 10分

        ,∴.      ……………………………………………… 14分

        19.解:(Ⅰ)設數(shù)列的公比為,由,.             …………………………………………………………… 4分

        ∴數(shù)列的通項公式為.      ………………………………… 6分

        (Ⅱ) ∵,    ,      ①

        .      ②         

        ①-②得: …………………12分

                     得,                           …………………14分

        20.解:(I)取中點,連接.

        分別是梯形的中位線

        ,又

        ∴面,又

        .……………………… 7分

        (II)由三視圖知,是等腰直角三角形,

             連接

             在面AC1上的射影就是,∴

             ,

        ∴當的中點時,與平面所成的角

          是.           ………………………………14分

                                                       

        21.解:(Ⅰ)由題意:.

        為點M的軌跡方程.     ………………………………………… 4分

        (Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設,MN方程為 聯(lián)立得:,設6ec8aac122bd4f6e

            ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

               同理RQ的方程為,求得.  ………………………… 9分

        .  ……………………………… 13分

        當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

        22. 解:(Ⅰ),由題意得

        所以                    ………………………………………………… 4分

        (Ⅱ)證明:令,

        得:,……………………………………………… 7分

        (1)當時,,在,即上單調(diào)遞增,此時.

                  …………………………………………………………… 10分

        (2)當時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得

        .                        …………………………………………14分

        由 (1) 、(2)得 .

        ∴綜上所述,對于,使得成立. ………………15分


        同步練習冊答案