C. D.5 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

5張獎(jiǎng)券中有2張是中獎(jiǎng)的,首先由甲抽一張,然后由乙抽一張,求:
(1)甲中獎(jiǎng)的概率P(A);
(2)甲、乙都中獎(jiǎng)的概率P(B);
(3)只有乙中獎(jiǎng)的概率P(C);
(4)乙中獎(jiǎng)的概率P(D).

查看答案和解析>>

.由實(shí)數(shù)x,-x,|x|,,()2,-所組成的集合,最多含有()

A.2個(gè)元素               B.3個(gè)元素

C.4個(gè)元素               D.5個(gè)元素

 

查看答案和解析>>

.若雙曲線(a>0,b>0)上橫坐標(biāo)為的點(diǎn)到右焦點(diǎn)的距離大于它到左準(zhǔn)線的距離,則雙曲線離心率的取值范圍是(      )

A.(1,2)     B.(2,+)      C.(1,5)    D. (5,+)

 

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

13.0.8;(文)0.7

14.

15.;  (文)

16.①③

三、解答題:

17.解:(1)由,

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當(dāng)

       因此,當(dāng)時(shí),

      

       當(dāng)

           12分

18.解:設(shè)“中三等獎(jiǎng)”為事件A,“中獎(jiǎng)”為事件B,

       從四個(gè)小球中有放回的取兩個(gè)共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)

   (1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果       3分

   (1)兩個(gè)小球號(hào)碼相加之和等于4的取法有3種:

   (1,3),(2,2),(3,1)

       兩個(gè)小球號(hào)相加之和等于3的取法有4種:

   (0,3),(1,2),(2,1),(3,0)   4分

       由互斥事件的加法公式得

      

       即中三等獎(jiǎng)的概率為    6分

   (2)兩個(gè)小球號(hào)碼相加之和等于3的取法有4種;

       兩個(gè)小球相加之和等于4的取法有3種;

       兩個(gè)小球號(hào)碼相加之和等于5的取法有2種:(2,3),(3,2)

       兩個(gè)小球號(hào)碼相加之和等于6的取法有1種:(3,3)   9分

       由互斥事件的加法公式得

      

19.解法一(1)過點(diǎn)E作EG交CF于G,

       連結(jié)DG,可得四邊形BCGE為矩形,

//

       所以AD=EG,從而四邊形ADGE為平行四邊形

       故AE//DG    4分

       因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/2c9751a517b53bdf1bcd72912edcf2ae.zip/73789.files/image201.gif" >平面DCF, 平面DCF,

       所以AE//平面DCF   6分

    • <center id="uqyee"><del id="uqyee"></del></center>

            

             在

            

             M是AE中點(diǎn),

            

             由側(cè)視圖是矩形,俯視圖是直角梯形,

             得

             平面BCM

             又平面BCM。

      20.解:(1)當(dāng)時(shí),由已知得

            

             同理,可解得   4分

         (2)解法一:由題設(shè)

             當(dāng)

             代入上式,得     (*) 6分

             由(1)可得

             由(*)式可得

             由此猜想:   8分

             證明:①當(dāng)時(shí),結(jié)論成立。

             ②假設(shè)當(dāng)時(shí)結(jié)論成立,

             即

             那么,由(*)得

            

             所以當(dāng)時(shí)結(jié)論也成立,

             根據(jù)①和②可知,

             對(duì)所有正整數(shù)n都成立。

             因   12分

             解法二:由題設(shè)

             當(dāng)

             代入上式,得   6分

            

            

             -1的等差數(shù)列,

            

                12分

      21.解:(1)由橢圓C的離心率

             得,其中,

             橢圓C的左、右焦點(diǎn)分別為

             又點(diǎn)F2在線段PF1的中垂線上

            

             解得

                4分

         (2)由題意,知直線MN存在斜率,設(shè)其方程為

             由

             消去

             設(shè)

             則

             且   8分

             由已知,

             得

             化簡,得     10分

            

             整理得

      * 直線MN的方程為,     

             因此直線MN過定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)    12分

      22.解:   2分

         (1)由已知,得上恒成立,

             即上恒成立

             又當(dāng)

                6分

         (2)當(dāng)時(shí),

             在(1,2)上恒成立,

             這時(shí)在[1,2]上為增函數(shù)

                8分

             當(dāng)

             在(1,2)上恒成立,

             這時(shí)在[1,2]上為減函數(shù)

            

             當(dāng)時(shí),

             令   10分

             又 

                 12分

             綜上,在[1,2]上的最小值為

             ①當(dāng)

             ②當(dāng)時(shí),

             ③當(dāng)   14分


      同步練習(xí)冊(cè)答案