所以低于50分的人數(shù)為(人)----------------.5分 查看更多

 

題目列表(包括答案和解析)

山東省《體育高考方案》于2012年2月份公布,方案要求以學(xué)校為單位進行體育測試,某校對高三1班同學(xué)按照高考測試項目按百分制進行了預(yù)備測試,并對50分以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若90~100分數(shù)段的人數(shù)為2人.

(Ⅰ)請估計一下這組數(shù)據(jù)的平均數(shù)M;

(Ⅱ)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個小組.若選出的兩人成績差大于20,則稱這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.

【解析】本試題主要考查了概率的運算和統(tǒng)計圖的運用。

(1)由由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05,然后利用平均值公式,可知這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)

(2)中利用90~100分數(shù)段的人數(shù)為2人,頻率為0.05;得到總參賽人數(shù)為40,然后得到0~60分數(shù)段的人數(shù)為40×0.1=4人,第五組中有2人,這樣可以得到基本事件空間為15種,然后利用其中兩人成績差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種,得到概率值

解:(Ⅰ)由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05; ……………2分

∴這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)…4分

(Ⅱ)∵90~100分數(shù)段的人數(shù)為2人,頻率為0.05;

∴參加測試的總?cè)藬?shù)為=40人,……………………………………5分

∴50~60分數(shù)段的人數(shù)為40×0.1=4人, …………………………6分

設(shè)第一組50~60分數(shù)段的同學(xué)為A1,A2,A3,A4;第五組90~100分數(shù)段的同學(xué)為B1,B2

則從中選出兩人的選法有:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15種;其中兩人成績差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種 …………………………11分

則選出的兩人為“幫扶組”的概率為

 

查看答案和解析>>

  某地區(qū)甲校高二年級有1100人,乙校高二年級有900人,為了統(tǒng)計兩個學(xué)校高二年級在學(xué)業(yè)水平考試中的數(shù)學(xué)學(xué)科成績,采用分層抽樣的方法在兩校共抽取了200名學(xué)生的數(shù)學(xué)成績,如下表:(已知本次測試合格線是50分,兩校合格率均為100%)

甲校高二年級數(shù)學(xué)成績:

分組

[90,100]

頻數(shù)

10

25

35

30

x

乙校高二年級數(shù)學(xué)成績:

分組

[90,100]

頻數(shù)

15

30

25

y

5

   (I)計算x,y的值,并分別估計以上兩所學(xué)校數(shù)學(xué)成績的平均分(精確到1分)

   (II)若數(shù)學(xué)成績不低于80分為優(yōu)秀,低于80分為非優(yōu)秀,根據(jù)以上統(tǒng)計數(shù)據(jù)寫下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認為“兩個學(xué)校的數(shù)學(xué)成績有差異?”

甲校

乙校

總計

優(yōu)秀

非優(yōu)秀

總計

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

某地區(qū)甲校高二年級有1100人,乙校高二年級有900人,為了統(tǒng)計兩個學(xué)校高二年級在學(xué)業(yè)水平考試中的數(shù)學(xué)學(xué)科成績,采用分層抽樣的方法在兩校共抽取了200名學(xué)生的數(shù)學(xué)成績,如下表:(已知本次測試合格線是50分,兩校合格率均為100%)
甲校高二年級數(shù)學(xué)成績:
分組 [50,60) [60,70) [70,80) [80,90) [90,100]
頻數(shù) 10 25 35 30 x
乙校高二年級數(shù)學(xué)成績:
分組 [50,60) [60,70) [70,80) [80,90) [90,100]
頻數(shù) 15 30 25 y 5
   (I)計算x,y的值,并分別估計以上兩所學(xué)校數(shù)學(xué)成績的平均分(精確到1分)
(II)若數(shù)學(xué)成績不低于80分為優(yōu)秀,低于80分為非優(yōu)秀,根據(jù)以上統(tǒng)計數(shù)據(jù)寫下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認為“兩個學(xué)校的數(shù)學(xué)成績有差異?”
甲校 乙校 總計
優(yōu)秀
非優(yōu)秀
總計
附:
P(K2≥k0 0.10 0.05 0.025 0.010 0.005
k0 2.706 3.841 5.024 6.635 7.879
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

某地區(qū)甲校高二年級有1100人,乙校高二年級有900人,為了統(tǒng)計兩個學(xué)校高二年級在學(xué)業(yè)水平考試中的數(shù)學(xué)學(xué)科成績,采用分層抽樣的方法在兩校共抽取了200名學(xué)生的數(shù)學(xué)成績,如下表:(已知本次測試合格線是50分,兩校合格率均為100%)
甲校高二年級數(shù)學(xué)成績:
分組 [50,60) [60,70) [70,80) [80,90) [90,100]
頻數(shù) 10 25 35 30 x
乙校高二年級數(shù)學(xué)成績:
分組 [50,60) [60,70) [70,80) [80,90) [90,100]
頻數(shù) 15 30 25 y 5
   (I)計算x,y的值,并分別估計以上兩所學(xué)校數(shù)學(xué)成績的平均分(精確到1分)
(II)若數(shù)學(xué)成績不低于80分為優(yōu)秀,低于80分為非優(yōu)秀,根據(jù)以上統(tǒng)計數(shù)據(jù)寫下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認為“兩個學(xué)校的數(shù)學(xué)成績有差異?”
甲校 乙校 總計
優(yōu)秀
非優(yōu)秀
總計
附:
P(K2≥k0 0.10 0.05 0.025 0.010 0.005
k0 2.706 3.841 5.024 6.635 7.879
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>


同步練習(xí)冊答案