由公式.求得.. -------------9分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.

(1)求函數(shù)f(x)的表達式;

(2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;

(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴,

∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)證明:∵anbn=an=1-an=1-,

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

某市甲、乙兩校高二級學生分別有1100人和1000人,為了解兩校全體高二級學生期末統(tǒng)考的數(shù)學成績情況,采用分層抽樣方法從這兩所學校共抽取105名高二學生的數(shù)學成績,并得到成績頻數(shù)分布表如下,規(guī)定考試成績在[120,150]為優(yōu)秀.

甲校:

分組

[70,80)

[80,90)

[90,100)

[100,110)

[110,120)

[120,130)

[130,140)

[140,150)

頻數(shù)

2

3

10

15

15

x

3

1

乙校:

分組

[70,80)

[80,90)

[90,100)

[100,110)

[110,120)

[120,130)

[130,140)

[140,150)

頻數(shù)

1

2

9

8

10

10

y

3

(1)求表中x與y的值;

(2)由以上統(tǒng)計數(shù)據(jù)完成下面2x2列聯(lián)表,問是否有99%的把握認為學生數(shù)學成績優(yōu)秀與所在學校有關?

甲校

乙校

總計

優(yōu)秀

a

b

ab

非優(yōu)秀

c

d

cd

總計

ac

bd

n

參考公式:

P(K2k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

已知正項數(shù)列的前n項和滿足:,

(1)求數(shù)列的通項和前n項和

(2)求數(shù)列的前n項和;

(3)證明:不等式  對任意的,都成立.

【解析】第一問中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問中,利用裂項求和的思想得到結(jié)論。

第三問中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項數(shù)列,∴           ∴ 

又n=1時,

   ∴數(shù)列是以1為首項,2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        ,

   ∴不等式  對任意的都成立.

 

查看答案和解析>>

某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設計周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米(),圓心角為弧度.

(1)求關于的函數(shù)關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?

查看答案和解析>>

某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設計周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米(),圓心角為弧度.

(1)求關于的函數(shù)關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?

查看答案和解析>>


同步練習冊答案