題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( )
A.16條 B. 17條 C. 32條 D. 34條
一.選擇
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
B
B
A
C
A
D
B
C
B
A
B
二.填空
13. 14. 0 15.100 16. ②③④
三。解答題
17.(滿分10分)
(1) ,∴,∴
(5分)
(2)
,∴f(x)的值域?yàn)?sub> (10分)
18.解:(1)拿每個(gè)球的概率均為,兩球標(biāo)號(hào)的和是3的倍數(shù)有下列4種情況:
(1,2),(1,5),(2,4),(3,6)每種情況的概率為:
所以所求概率為: (6分)
(2)設(shè)拿出球的號(hào)碼是3的倍數(shù)的為事件A,則,,拿4次至少得2分包括2分和4分兩種情況。
,, (12分)
19 (滿分12分)
解法一:(Ⅰ)取BC中點(diǎn)O,連結(jié)AO.
為正三角形,.……3分
連結(jié),在正方形中,分別為的中點(diǎn),
由正方形性質(zhì)知,.………5分
又在正方形中,,
平面.……6分
(Ⅱ)設(shè)AB1與A1B交于點(diǎn),在平面1BD中,
作于,連結(jié),由(Ⅰ)得.
為二面角的平面角.………9分
在中,由等面積法可求得,………10分
又,.
所以二面角的大小為.……12分
解法二:(Ⅰ)取中點(diǎn),連結(jié).取中點(diǎn),以為原點(diǎn),如圖建立空間直角坐標(biāo)系,則
……3分
,.
平面.………6分
(Ⅱ)設(shè)平面的法向量為..
令得為平面的一個(gè)法向量.……9分
由(Ⅰ)為平面的法向量.……10分
.
所以二面角的大小為.……12分
20.(滿分12分)解:(I),
① …2分
,
又
即, ② …4分
③ … 6分
聯(lián)立方程①②③,解得 … 7分
(II)
… 9分
令
x
(-∞,-3)
-3
(-3,1)
1
(1,+∞)
f′(x)
+
0
-
0
+
f(x)
極大
極小
故h(x)的單調(diào)增區(qū)間為(-∞,-3),(1,+∞),單調(diào)減區(qū)間為(-3,1)
21.(滿分12分)
解:(1)∵,∴.
∴().
∴().
∴().
∴(). …3分
∴數(shù)列等比,公比,首項(xiàng),
而,且,∴.
∴.
∴. …6分
(2)
.
, ①
∴2. ②
①-②得 -,
, …9分
∴. …12分
22.(滿分12分)
A(0,b)知
…2分
設(shè),得 …4分
因?yàn)辄c(diǎn)P在橢圓上,所以 …6分
整理得2b2=
⑵由⑴知,
于是F(-a,0), Q
△AQF的外接圓圓心為(a,0),半徑r=|FQ|=a …10分
所以,解得a=2,∴c=1,b=,所求橢圓方程為 …12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com