由解得交點(diǎn)B.. ∴AC邊上的高線BD的方程 查看更多

 

題目列表(包括答案和解析)

⊙O1和⊙O2的極坐標(biāo)方程分別為,

⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

⑵求經(jīng)過(guò)⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.

【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡(jiǎn)單的圓冤啊位置關(guān)系的運(yùn)用

(1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。

(2)中,根據(jù)上一問(wèn)中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.

(I),,由.所以

為⊙O1的直角坐標(biāo)方程.

同理為⊙O2的直角坐標(biāo)方程.

(II)解法一:由解得,

即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過(guò)交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過(guò)交點(diǎn)的直線的直角坐標(biāo)方程為y=-x

 

查看答案和解析>>

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿足,求{cn}的前n項(xiàng)和Tn.

【解析】本試題主要是考查了等比數(shù)列的通項(xiàng)公式和求和的運(yùn)用。第一問(wèn)中,利用等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項(xiàng)公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問(wèn)中,,由第一問(wèn)中知道,然后利用裂項(xiàng)求和得到Tn.

解: (Ⅰ) 設(shè):{an}的公差為d,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image003.png">解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image004.png">……………8分

 

查看答案和解析>>

已知函數(shù)的定義域分別是集合A、B,

(1)求集合A,B;

(2)求集合

【解析】本試題考查了集合的基本運(yùn)算。第一問(wèn)中,利用

解得 

解得

第二問(wèn)中,由(1)得 

解:(1)由解得      ……………………3分

解得               ……………………6分

(2)由(1)得                           ……………………9分

 

查看答案和解析>>

下列說(shuō)法正確的個(gè)數(shù)有(  )

①圖中表示的區(qū)域是不等式2x-y+1≥0的解

②圖中表示區(qū)域是不等式3x+2y-1>0的解

③圖中表示的區(qū)域是不等式Ax+By+C≥0的解

④圖中表示的區(qū)域是不等式Ax+By+C≤0的解

⑤圖中表示的區(qū)域不是不等式Ax+By+C≥0的解

A.0                B.2         C.4         D.5

查看答案和解析>>

已知函數(shù).]

(1)求函數(shù)的最小值和最小正周期;

(2)設(shè)的內(nèi)角、的對(duì)邊分別為,,,且,,

,求的值.

【解析】第一問(wèn)利用

得打周期和最值

第二問(wèn)

 

,由正弦定理,得,①  

由余弦定理,得,即,②

由①②解得

 

查看答案和解析>>


同步練習(xí)冊(cè)答案