題目列表(包括答案和解析)
2 |
3 |
3 |
數(shù)學(xué)課上,張老師用六根長度均為a的塑料棒搭成了一個正三棱錐(如圖所示),然后他將其中的兩根換成長度分別為在和的塑料棒、又搭成了 一個三棱錐,陳成同學(xué)邊聽課邊動手操作,也將其中的兩根換掉,但沒有成功,不能搭成三棱錐,如果兩人都將BD換成了長為的塑料棒.
(1)試問張老師換掉的另一根塑料棒是什么,而陳成同學(xué)換掉的另 一根塑料棒又是什么?
請你用學(xué)到的數(shù)學(xué)知識解釋陳成同學(xué)失敗的原因;
(2)試證:平面ABD⊥平面CBD;
(3)求新三棱錐的外接球的表面積.
數(shù)學(xué)課上,張老師用六根長度均為a的塑料棒搭成了一個正三棱錐(如圖所示),然后他將其中的兩根換成長度分別為在和的塑料棒、又搭成了一個三棱錐,陳成同學(xué)邊聽課邊動手操作,也將其中的兩根換掉,但沒有成功,不能搭成三棱錐,如果兩人都將BD換成了長為的塑料棒.
(1)試問張老師換掉的另一根塑料棒是什么,而陳成同學(xué)換掉的另一根塑料棒又是什么?請你用學(xué)到的數(shù)學(xué)知識解釋陳成同學(xué)失敗的原因;
(2)試證:平面ABD⊥平面CBD;
(3)求新三棱錐的外接球的表面積.
如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.
(Ⅰ)求證:點為棱的中點;
(Ⅱ)判斷四棱錐和的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,
易知,面。由此知:從而有又點是的中點,所以,所以點為棱的中點.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。
(1)過點作于點,取的中點,連。面面且相交于,面內(nèi)的直線,面。……3分
又面面且相交于,且為等腰三角形,易知,面。由此知:,從而有共面,又易知面,故有從而有又點是的中點,所以,所以點為棱的中點. …6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com