③當(dāng), 查看更多

 

題目列表(包括答案和解析)

當(dāng)a>0時(shí),設(shè)命題P:函數(shù)f(x)=x+
a
x
在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式x2+ax+1>0對(duì)任意x∈R都成立.若“P且Q”是真命題,則實(shí)數(shù)a的取值范圍是(  )
A、0<a≤1
B、1≤a<2
C、0≤a≤2
D、0<a<1或a≥2

查看答案和解析>>

當(dāng)a,b是非零實(shí)數(shù)時(shí),以下四個(gè)命題都成立:
a+
1
a
≠0
;                  ②(a+b)2=a2+2ab+b2
③若|a|=|b|,則a=±b;        ④若a2=ab,則a=b.
那么,當(dāng)a,b是非零復(fù)數(shù)時(shí),仍然保證成立的命題是( 。
A、①②B、②③C、③④D、②④

查看答案和解析>>

當(dāng)m為何實(shí)數(shù)時(shí),復(fù)數(shù)Z=(2m+1)(m-2)+(m-1)(m-2)i是
(1)實(shí)數(shù);(2)虛數(shù);(3)純虛數(shù);(4)對(duì)應(yīng)點(diǎn)在x軸上方.

查看答案和解析>>

當(dāng)正三角形的邊長(zhǎng)為n(n∈N*)時(shí),圖(1)中點(diǎn)的個(gè)數(shù)為f3(n)=1+2+3+…+(n+1)=
1
2
(n+1)(n+2);當(dāng)正方形的邊長(zhǎng)為n時(shí),圖(2)中點(diǎn)的個(gè)數(shù)為f4(n)=(n+1)2;在計(jì)算圖(3)中邊長(zhǎng)為n的正五邊形中點(diǎn)的個(gè)數(shù)f5(n)時(shí),觀察圖(4)可得f5(n)=f4(n)+f3(n-1)=(n+1)2+
n(n+1)
2
=
1
2
(n+1)(3n+2);….則邊長(zhǎng)為n的正k邊形(k≥3,k∈N)中點(diǎn)的個(gè)數(shù)fk(n)=
 

精英家教網(wǎng)

查看答案和解析>>

當(dāng)兩個(gè)向量
a
,
b
不共線時(shí),求證:
(1)|
a
|-|
b
|
|
a
+
b
|
|
a
| + |
b
|
;(2)|
a
|-|
b
|
|
a
-
b
|
|
a
| + |
b
|

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

1.答案:A

解:依題意可知:由

顯然:不能推出

故選A ;

2.答案:D

解:依題意可知:設(shè)點(diǎn),則在點(diǎn)P處的切線的斜率為,即,又

故選D ;

3.答案:C

解:依題意可知:由是奇函數(shù),

故選C ;

4.答案:A

解:依題意可知:由

故選A;

5.答案:C

解:如圖:函數(shù)是周期函數(shù),T=1。

故選C;

 

6.答案:A

解:依題意可知:由,

。

故選A ;

7.答案:B

解:依題意可知:由圖可知:

。

8.答案:A

解:依題意可知:如圖,

,

則在中,;

則在中,;

則在中,;

 

故選A ;

9.答案:D

解:依題意可知:因表示與同方向的單位向量,

表示與同方向的單位向量,故,而,

又(+,說明向量與向量垂直,根據(jù)向量加法的平行四邊形法則可知:向量所在直線 過向量所在線段中點(diǎn),根據(jù)等腰三角形三線合一的性質(zhì),可逆推為等腰三角形。又夾角為,故為等邊三角形。

故選D ;

10.答案:A

解:設(shè),在上,,,,排除D;在上,,,,排除B與C;故選A。

11.答案:B

解法一:正方體的八個(gè)頂點(diǎn)可確定條直線;條直線組成對(duì)直線;正方體的八個(gè)頂點(diǎn)可確定個(gè)面,其中12個(gè)四點(diǎn)面(6個(gè)表面,4個(gè)面對(duì)角面,2個(gè)體對(duì)角面),8個(gè)三點(diǎn)面;每個(gè)四點(diǎn)面上有條直線,6條直線組成對(duì)直線,12個(gè)四點(diǎn)面由12×15=180對(duì)直線組成;每個(gè)三點(diǎn)面上有條直線,3條直線組成對(duì)直線,8個(gè)三點(diǎn)面由8×3=24對(duì)直線組成;由正方體的八個(gè)頂點(diǎn)中的兩個(gè)所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為;

解法二:正方體的八個(gè)頂點(diǎn)可確定個(gè)四面體,每個(gè)四面體中有三對(duì)異面直線,由正方體的八個(gè)頂點(diǎn)中的兩個(gè)所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為;

12.答案:A

解:①正確;①中依題意可令,

當(dāng)時(shí),上為減函數(shù),

又因在區(qū)間為減函數(shù),故;

②錯(cuò)誤;②中當(dāng)

當(dāng)

③錯(cuò)誤;③中當(dāng)時(shí),

④正確;

圓的對(duì)稱軸為直徑所在的直線,故原命題正確。

故答案為:A。

二、填空題:本大題共4小題,每小題4分,共16分,把答案填在橫線上。

13.答案:

解:設(shè)P點(diǎn)的坐標(biāo)為,則

直線PQ的方程為:

Q點(diǎn)的坐標(biāo)為,R點(diǎn)的坐標(biāo)為,

故答案為:;

14.答案:

解:依題意可知:正四棱錐S―ABCD的底面正方形ABCD在過球心O的大圓上,設(shè)球半徑為R,AC=2R=

;

設(shè)球心O到側(cè)面SAB的距離為,連接

,過,

連接SM,則

,

4。

故答案為:

15.答案:10

解:依題意可知:由,故的系數(shù)為。

故答案為:10    ;

16.答案:③

解:依題意可知:①錯(cuò),因在上,為減函數(shù),而在上,為增函數(shù)。

②錯(cuò),因在上,為增函數(shù),而在上,為減函數(shù)。

③正確。因在上,為增函數(shù)。

④錯(cuò),因在上,為增函數(shù),而在上,為減函數(shù),故時(shí),函數(shù)有極大值。

⑤錯(cuò),因在上,為增函數(shù),故時(shí),函數(shù)沒有極大值。

故答案為:③;

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

(17)解:,設(shè)中有個(gè)元素,顯然有,其中最大的一個(gè)是,由于是正整數(shù)集合,故

當(dāng)時(shí),,此時(shí)不符合題意;

當(dāng)時(shí),,顯然只有符合題意;

當(dāng)時(shí),設(shè)其中,

此時(shí)令

,則  

不符合題意;

,由于是正整數(shù)集合,故,

 

    故時(shí)不符合題意;

綜上所述

(18)解:令

故當(dāng)

(19)。答:與平面垂直的直線條數(shù)有1條為

證法一:依題意由圖可知:連,

;

 

證法二:依題意由圖建立空間直角坐標(biāo)系:

設(shè)與垂直的法向量為,則有:

,而,故

(20)解:設(shè)S為勞動(dòng)村全體農(nóng)民的集合,季度勞動(dòng)村在外打工的農(nóng)民的集合,則季度勞動(dòng)村沒有在外打工的農(nóng)民的集合,由題意有

所以

勞動(dòng)村的農(nóng)民全年在外打工為,則

,

所以,

。

故勞動(dòng)村至少有的農(nóng)民全年在外打工。

(21)解:①作圖進(jìn)行受力分析,如下圖示;

由向量的平行四邊形法則,力的平衡及解直角三角形等知識(shí),得出:

  

② ∵,∴

上為減函數(shù),

∴當(dāng)逐漸增大時(shí),也逐漸增大。

③要最小,則為最大,∴當(dāng)時(shí),最小,最小值是

④要,則,∴當(dāng)時(shí),

(22)解:(Ⅰ)C的焦點(diǎn)為F(1,0),直線l的斜率為1,所以l的方程為

代入方程,并整理得  

設(shè)則有  

所以夾角的大小為

(Ⅱ)由題設(shè) 得  

        • 由②得,  ∵    ∴

          聯(lián)立①、③解得,依題意有

          又F(1,0),得直線l方程為

            

          當(dāng)時(shí),l在方程y軸上的截距為

          由     可知在[4,9]上是遞減的,

          直線l在y軸上截距的變化范圍為

          作者:     湖南省衡陽市祁東縣育賢中學(xué)  高明生 

          PC:       421600

          TEL:      0734---6184532

          Cellphone: 13187168216

          E―mail:   hunanqidonggms@163.com

          QQ:        296315069


          同步練習(xí)冊(cè)答案
          • <p id="h14e1"><tr id="h14e1"></tr></p>