(Ⅰ).求軌跡的方程, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知,點(diǎn)滿足,記點(diǎn)的軌跡為.

(Ⅰ)求軌跡的方程;

(Ⅱ)過(guò)點(diǎn)F2(1,0)作直線l與軌跡交于不同的兩點(diǎn)A、B,設(shè),若的取值范圍

 

查看答案和解析>>

在圓上任取一點(diǎn),過(guò)點(diǎn)軸的垂線段,為垂足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段的中點(diǎn)形成軌跡

(1)求軌跡的方程;

(2)若直線與曲線交于兩點(diǎn),為曲線上一動(dòng)點(diǎn),求面積的最大值

 

查看答案和解析>>

經(jīng)過(guò)點(diǎn)且與直線相切的動(dòng)圓的圓心軌跡為.點(diǎn)在軌跡上,且關(guān)于軸對(duì)稱,過(guò)線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使直線與軌跡在點(diǎn)處的切線平行,設(shè)直線與軌跡交于點(diǎn).

(1)求軌跡的方程;

(2)證明:;

(3)若點(diǎn)到直線的距離等于,且的面積為20,求直線的方程.

 

查看答案和解析>>

在直角坐標(biāo)系中,點(diǎn)到點(diǎn),的距離之和是,點(diǎn)的軌跡軸的負(fù)半軸交于點(diǎn),不過(guò)點(diǎn)的直線與軌跡交于不同的兩點(diǎn)

⑴求軌跡的方程;

⑵當(dāng)時(shí),證明直線過(guò)定點(diǎn).

 

查看答案和解析>>

(本小題滿分12分) 如圖,動(dòng)點(diǎn)與兩定點(diǎn)、構(gòu)成,且直線的斜率之積為4,設(shè)動(dòng)點(diǎn)的軌跡為。

(Ⅰ)求軌跡的方程;

(Ⅱ)設(shè)直線軸交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍。

 

查看答案和解析>>

1、A  2,、B  3、 D  4,、B  5、 D  6、C   7、A  8、B  9、A  10、D

11、(,1]   12、-或1      13、6p     14、2    15、11

16解:解:(Ⅰ)

           

當(dāng),即時(shí),取得最大值.

(Ⅱ)當(dāng),即時(shí),

所以函數(shù)的單調(diào)遞增區(qū)間是

17、解:(Ⅰ)從15名教師中隨機(jī)選出2名共種選法,   …………………………2分

所以這2人恰好是教不同版本的男教師的概率是.  …………………5分

(Ⅱ)由題意得

;  ;

的分布列為

0

1

2

 

 

所以,數(shù)學(xué)期望

18、解法一:(Ⅰ)證明:連接

文本框:        

   

                                      

     。  ……………………3分

∥平面 …………………………5分

(Ⅱ)解:在平面

……………………8分

設(shè)。

所以,二面角的大小為。 ………………12分

19、(I)解:當(dāng)

  ①當(dāng), 方程化為

  ②當(dāng), 方程化為1+2x = 0, 解得,

  由①②得,

 (II)解:不妨設(shè)

 因?yàn)?sub>

  所以是單調(diào)遞函數(shù),    故上至多一個(gè)解,

 

20、解:(Ⅰ)由知,點(diǎn)的軌跡是以、為焦點(diǎn)的雙曲線右支,由,∴,故軌跡E的方程為…(3分)

(Ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)直線l方程為,與雙曲線方程聯(lián)立消,設(shè)、,

<noscript id="e4obk"></noscript>

(i)∵

……………………(7分)

    假設(shè)存在實(shí)數(shù),使得,

    故得對(duì)任意的恒成立,

    ∴,解得 ∴當(dāng)時(shí),.

    當(dāng)直線l的斜率不存在時(shí),由知結(jié)論也成立,

    綜上,存在,使得.

   (ii)∵,∴直線是雙曲線的右準(zhǔn)線,

    由雙曲線定義得:,

    方法一:∴

    ∵,∴,∴

    注意到直線的斜率不存在時(shí),,綜上,

    方法二:設(shè)直線的傾斜角為,由于直線

與雙曲線右支有二個(gè)交點(diǎn),∴,過(guò)

,垂足為,則,

        由,得故:

    21 解:(Ⅰ)

    當(dāng)時(shí),

    ,即是等比數(shù)列. ∴; 

    (Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

     則有

    ,解得,

    再將代入得成立, 所以.  

    (III)證明:由(Ⅱ)知,所以

    ,   由

    所以,   

    從而

    .                       

     

     


    同步練習(xí)冊(cè)答案