題目列表(包括答案和解析)
已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí), 又 所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令 有
對(duì)a分類(lèi)討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時(shí), 又
∴ 函數(shù)在點(diǎn)(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當(dāng)即時(shí)
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當(dāng)即時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無(wú)極小值。
綜上所述 時(shí),極大值為,無(wú)極小值
時(shí) 極大值是,極小值是 ----------8分
(Ⅲ)設(shè),
對(duì)求導(dǎo),得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實(shí)數(shù)的取值范圍是(,)
已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)令函數(shù)(),求函數(shù)的最大值的表達(dá)式;
【解析】第一問(wèn)中利用令,,
∴,
第二問(wèn)中,=
=
=令, ,則借助于二次函數(shù)分類(lèi)討論得到最值。
(Ⅰ)解:令,,
∴,
∴的單調(diào)遞減區(qū)間為:…………………4分
(Ⅱ)解:=
=
=
令, ,則……………………4分
對(duì)稱軸
① 當(dāng)即時(shí),=……………1分
② 當(dāng)即時(shí),=……………1分
③ 當(dāng)即時(shí), ……………1分
綜上:
已知中,內(nèi)角的對(duì)邊的邊長(zhǎng)分別為,且
(I)求角的大;
(II)若求的最小值.
【解析】第一問(wèn),由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
第二問(wèn),
三角函數(shù)的性質(zhì)運(yùn)用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,,則當(dāng) ,即時(shí),y的最小值為.
已知函數(shù)(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(1)求的解析式; (2)當(dāng),求的值域.
【解析】第一問(wèn)利用三角函數(shù)的性質(zhì)得到)由最低點(diǎn)為得A=2. 由x軸上相鄰的兩個(gè)交點(diǎn)之間的距離為得=,即,由點(diǎn)在圖像上的
第二問(wèn)中,
當(dāng)=,即時(shí),取得最大值2;當(dāng)
即時(shí),取得最小值-1,故的值域?yàn)閇-1,2]
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com