題目列表(包括答案和解析)
π | 2 |
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;
(Ⅲ) 設(shè)bn=(32n-8),求數(shù)列{bn}的前項(xiàng)和Tn
(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線的距離為,若x=時(shí),y=f(x)有極值.
(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(本題滿分12分) 已知數(shù)列{an}滿足
(Ⅰ)求數(shù)列的前三項(xiàng):a1,a2,a3;
(Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m
(Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn.
(本題滿分12分) 已知函數(shù)
(Ⅰ)當(dāng)的 單調(diào)區(qū)間;
(Ⅱ)當(dāng)的取值范圍。一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
答案
二、填空題:
11. ; 12. ; 13. ;
14. ; 15. ; 16. ③ ④ .
三、解答題:
17.解:(1)在中,由,得, 又由正弦定理: 得:. ……………………4分
(2)由余弦定理:得:,
即,解得或(舍去),所以. ……8分
所以,
即. …………………12分
18.解:(1)依題意,雙曲線的方程可設(shè)為:、,
則 解之得:,
所以雙曲線的方程為:. ……………………6分
(2)設(shè)、,直線與軸交于點(diǎn),此點(diǎn)即為雙曲線的右焦點(diǎn),由 消去,得,
此方程的且,,
所以、兩點(diǎn)分別在左、右支上,不妨設(shè)在左支、在右支上 ………9分
則由第二定義知:,, …………11分
所以
,即. ………14分
(亦可求出、的坐標(biāo),用兩點(diǎn)間距離公式求.)
19.(1)當(dāng)點(diǎn)為的中點(diǎn)時(shí),與平面平行.
∵在中,、分別為、的中點(diǎn)
∴∥ 又平面,而平面
∴∥平面. ……………………4分
(2)證明(略證):易證平面,又是在平面內(nèi)的射影,,∴. ……………………8分
(3)∵與平面所成的角是,∴,,.
過作于,連,則. …………………10分
易知:,,設(shè),則,,
在中,,
得. ………14分
解法二:(向量法)(1)同解法一
(2)建立圖示空間直角坐標(biāo)系,則, ,,.
設(shè),則
∴ (本小題4分)
(3)設(shè)平面的法向量為,由,
得:,
依題意,∴,
得. (本小題6分)
20.解:(1),
∴可設(shè),
因而 ①
由 得 ②
∵方程②有兩個(gè)相等的根,
∴,即 解得 或
由于,(舍去),將 代入 ① 得 的解析式. …………………6分
(2)=,
∵在區(qū)間內(nèi)單調(diào)遞減,
∴在上的函數(shù)值非正,
由于,對稱軸,故只需,注意到,∴,得或(舍去)
故所求a的取值范圍是. …………………11分
(3)時(shí),方程僅有一個(gè)實(shí)數(shù)根,即證方程 僅有一個(gè)實(shí)數(shù)根.令,由,得,,易知在,上遞增,在上遞減,的極大值,的極小值,故函數(shù)的圖像與軸僅有一個(gè)交點(diǎn),∴時(shí),方程僅有一個(gè)實(shí)數(shù)根,得證. ……………………16分
21.解:(1), ……………………1分
=. ……………………4分
(2), ……………………5分
,………7分
∴數(shù)列是為首項(xiàng),為公比的等比數(shù)列. ……………………8分
(3)由(2)知, Sn =, ……………9分
=∵0<<1,∴>0,,0<<1,,
∴, ……………………11分
又當(dāng)時(shí),,∴, ……………………13分
∴<.……14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com