(2)若圓M與直線的值. 查看更多

 

題目列表(包括答案和解析)

直線2x-y+m=0與圓x2+y2=5交于A、B,O為坐標原點,若OA⊥OB,則m的值為( 。
A、±5
B、±
5
2
C、±5
2
D、±
5
2
2

查看答案和解析>>

精英家教網(wǎng)直線l:y=k(x-1)過已知橢圓C:
x2
a2
+
y2
b2
=1
經過點(0,
3
),離心率為
1
2
,經過橢圓C的右焦點F的直線l交橢圓于A、B兩點,點A、F、B在直線x=4上的射影依次為點D、K、E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點M,且
MA
AF
,
MB
BF
,當直線l的傾斜角變化時,探求λ+μ的值是否為定值?若是,求出λ+μ的值,否則,說明理由;
(Ⅲ)連接AE、BD,試探索當直線l的傾斜角變化時,直線AE與BD是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

直線
x
a
±
y
b
=0
稱為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的“特征直線”,若橢圓的離心率e=
3
2

(Ⅰ)求橢圓的“特征直線”方程;
(Ⅱ)過橢圓C上一點M(x0,y0)(x0≠0)作圓x2+y2=b2的切線,切點為P、Q,直線PQ與橢圓的“特征直線”相交于點E、F,O為坐標原點,若
OE
OF
取值范圍恰為(-∞,-3)∪[
3
16
,+∞)
,求橢圓C的方程.

查看答案和解析>>

直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若MN≥2
3
,則k的取值范圍是
 

查看答案和解析>>

直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若|MN|≥2
3
,則k的取值范圍是( 。
A、[-
3
4
,0]
B、(-∞,-
3
4
]∪[0,+∞)
C、[-
3
3
,
3
3
]
D、[-
2
3
,0]

查看答案和解析>>

 

一、單項選擇題(每小題5分,共60分)

1.B    2.B    3.D    4.C    5.C    6.D    7.A    8.D    9.B

10.C   11.B   12.A

二、填空題(每小題4分,共16分)

13.

14.

15.1

16.

三、解答題(本大題共6小題,共74分)

17.解:

是減函數(shù).

又由

18.解:

表示本次比賽組織者可獲利400萬美元,既本次比賽馬刺隊(或活塞隊)

以4:0獲勝,所以

表示本次比賽組織者可獲利500萬美元,即本次比賽馬刺隊(或活塞隊)

以4:1獲勝,所以

同理

故的概率分布為

400

500

600

700

 

萬美元.

19.解:由

平方相加得

此時

再平方相加得

,

結合

20.解:

∴四邊形ABCD為兩組對邊相等的四邊形.

故四邊形ABCD是平行四邊形.

21.解:

   (1)由拋物線在A處的切線斜率y′=3,設圓的方程為.①

又圓心在AB的中垂線上,即  ②

由①②得圓心.

   (2)聯(lián)立直線與圓的方程得

.

22.解:

   (1)由題意得,

為的等比數(shù)列,

為的等差數(shù)列,

   (2)

       

   (3)  ①

   ②

由①―②得

 


同步練習冊答案