(2) ∵a?b = 2cos2+ 3sin2= 1 + cos (a+b) +3 查看更多

 

題目列表(包括答案和解析)

設(shè)
.
a
.
b
為基底向量,已知向量
.
AB
=
.
a
-k
.
b
,
.
CB
=2
.
a
+
.
b
.
CD
=3
.
a
-
.
b
,若A,B,D三點(diǎn)共線,則實(shí)數(shù)k的值等于( 。
A、-2B、2C、-10D、10

查看答案和解析>>

某學(xué)校的課題組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績?nèi)缦卤硭荆喝魡慰瞥煽冊?5分以上(含85分),則該科成績?yōu)閮?yōu)秀.
序號(hào) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數(shù)學(xué) 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人)
數(shù)學(xué)成績優(yōu)秀 數(shù)學(xué)成績不優(yōu)秀 總計(jì)
物理成績優(yōu)秀
物理成績不優(yōu)秀
總計(jì) 20
(2)根據(jù)(1)中表格的數(shù)據(jù)計(jì)算,是否有99%的把握,認(rèn)為學(xué)生的數(shù)學(xué)成績與物理之間有關(guān)系?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.100 0.050 0.025 0.010 0.001
k 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>

命題p:(t-1)2≥|a-b|,其中a,b滿足條件:五個(gè)數(shù)18,20,22,a,b的平均數(shù)是20,標(biāo)準(zhǔn)差是
2

命題q:m≤t≤n,其中m,n滿足條件:點(diǎn)M在橢圓
x2
4
+y2=1
上,定點(diǎn)A(1,0),m、n分別為線段AM長的最小值和最大值.
若命題“p或q”為真且命題“p且q”為假,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

某地區(qū)甲校高二年級(jí)有1100人,乙校高二年級(jí)有900人,為了統(tǒng)計(jì)兩個(gè)學(xué)校高二年級(jí)在學(xué)業(yè)水平考試中的數(shù)學(xué)學(xué)科成績,采用分層抽樣的方法在兩校共抽取了200名學(xué)生的數(shù)學(xué)成績,如下表:(已知本次測試合格線是50分,兩校合格率均為100%)
甲校高二年級(jí)數(shù)學(xué)成績:
分組 [50,60) [60,70) [70,80) [80,90) [90,100]
頻數(shù) 10 25 35 30 x
乙校高二年級(jí)數(shù)學(xué)成績:
分組 [50,60) [60,70) [70,80) [80,90) [90,100]
頻數(shù) 15 30 25 y 5
   (I)計(jì)算x,y的值,并分別估計(jì)以上兩所學(xué)校數(shù)學(xué)成績的平均分(精確到1分)
(II)若數(shù)學(xué)成績不低于80分為優(yōu)秀,低于80分為非優(yōu)秀,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)寫下面2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“兩個(gè)學(xué)校的數(shù)學(xué)成績有差異?”
甲校 乙校 總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
附:
P(K2≥k0 0.10 0.05 0.025 0.010 0.005
k0 2.706 3.841 5.024 6.635 7.879
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

某大學(xué)高等數(shù)學(xué)老師上學(xué)期分別采用了A,B兩種不同的教學(xué)方式對(duì)甲、乙兩個(gè)大一新生班進(jìn)行教改試驗(yàn)(兩個(gè)班人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名同學(xué)的上學(xué)期數(shù)學(xué)期末考試成績,得到莖葉圖如圖:
(Ⅰ)從乙班這20名同學(xué)中隨機(jī)抽取兩名高等數(shù)學(xué)成績不得低于85分的同學(xué),求成績?yōu)?0分的同學(xué)被抽中的概率;
(Ⅱ)學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?×2列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?”
甲班 乙班 合計(jì)
優(yōu)秀
不優(yōu)秀
合計(jì)
下面臨界值表僅供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
(Ⅲ)從乙班高等數(shù)學(xué)成績不低于85分的同學(xué)中抽取2人,成績不低于90分的同學(xué)得獎(jiǎng)金100元,否則得獎(jiǎng)金50元,記ξ為這2人所得的總獎(jiǎng)金,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>


同步練習(xí)冊答案