由題意.得... 查看更多

 

題目列表(包括答案和解析)

意大利數(shù)學(xué)家斐波那契(L.Fibonacci)在他的1228年出版的《算經(jīng)》一書中,記述了有趣的兔子問題,假定每對(duì)大兔子每月能生一對(duì)小兔子,而每對(duì)小兔子過了一個(gè)月就可以長(zhǎng)成大兔子,如果不發(fā)生死亡,那么由一對(duì)大兔子開始,一年后能有多少對(duì)大兔子呢?若一直推算下去,可得到一個(gè)數(shù)列{an}.若a1=a2=1,你能歸納出當(dāng)n≥3時(shí)an的遞推關(guān)系嗎?

查看答案和解析>>

注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做.
已知橢圓的焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4y的焦點(diǎn),離心率e=
2
5
,過橢圓的右焦點(diǎn)F作與坐標(biāo)軸不垂直的直線l,交橢圓于A、B兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)M(m,0)是線段OF上的一個(gè)動(dòng)點(diǎn),且(
MA
+
MB
)⊥
AB
,求m的取值范圍;
(3)設(shè)點(diǎn)C是點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn),在x軸上是否存在一個(gè)定點(diǎn)N,使得C、B、N三點(diǎn)共線?若存在,求出定點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

本題滿分14分)

已知函數(shù),,設(shè).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若以函數(shù)圖像上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;

(Ⅲ)是否存在實(shí)數(shù),使得函數(shù)的圖像與函數(shù)的圖像恰有四個(gè)不同的交點(diǎn)?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

 

 

查看答案和解析>>

(本題滿分為12分)

已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是

(1)求實(shí)數(shù)的值;

(2)求在區(qū)間上的最大值;

(3)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說明理由.

 

查看答案和解析>>

(本小題滿分16分) [已知數(shù)列滿足

,.

(1)求數(shù)列的通項(xiàng)公式

(2)若對(duì)每一個(gè)正整數(shù),若將按從小到大的順序排列后,此三項(xiàng)均能構(gòu)成等

差數(shù)列, 且公差為.①求的值及對(duì)應(yīng)的數(shù)列

②記為數(shù)列的前項(xiàng)和,問是否存在,使得對(duì)任意正整數(shù)恒成立?若存

在,求出的最大值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案