題目列表(包括答案和解析)
(1)由“若a,b,c∈R則(ab)c=a(bc)”類(lèi)比“若a,b,c為三個(gè)向量則(a·b)·c=a·(b·c)”
(2)在數(shù)列{an}中,a1=0,an+1=2an+2猜想an=2n-2
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類(lèi)比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”
(4)已知(2-x)8=a0+a1x+a2x2+…+a8x8,則a1+a2+…+a8=256.
上述四個(gè)推理中,得出的結(jié)論正確的是
________.(寫(xiě)出所有正確結(jié)論的序號(hào))(1)由“若a,b,c∈R則(ab)c=a(bc)”類(lèi)比“若a,b,c為三個(gè)向量則(a·b)·c=a·(b·c)”
(2)在數(shù)列{an}中,a1=0,an+1=2an+2猜想an=2n-2
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類(lèi)比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”
(4)若M(-2,0),N(2,0),則以MN為斜邊的直角三角形直角頂點(diǎn)P的軌跡方程是x2+y2=4上述四個(gè)推理中,得出的結(jié)論正確的是
________(寫(xiě)出所有正確結(jié)論的序號(hào))(1)由“若a,b,c∈R則(ab)c=a(bc)”類(lèi)比“若a,b,c為三個(gè)向量則(a·b)·c=a·(b·c)”
(2)在數(shù)列{an}中,a1=0,an+1=2an+2猜想an=2n-2
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類(lèi)比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”
(4)若f(x)=2cos2x+2sinxcosx,則f()=+1
上述四個(gè)推理中,得出的結(jié)論正確的是
________.(寫(xiě)出所有正確結(jié)論的序號(hào))一、選擇題:
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
B
D
C
C
D
B
A
A
B
C
二、填空題:
13.2x 14. x=-1 15.k2=2.143 沒(méi)有 16.(-∞,-3]
三、解答題:
17.(1)z=1+i |z|= (2分)
(2)a=0,b=1 (4分)
18.綜合法、分析法均可(略)
19.(1)依題意有:解得a=1,b=-3(3分)
(2)f(x)=x3-3x f′(x)=3x2-3
當(dāng)f′(x)>0,即x>1或x<-1,∴單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞)
當(dāng)f′(x)>0,-1<x<1,∴單調(diào)遞減區(qū)間為(-1,1) (5分)
20.(1)a1=,a2=,a3=,a4= (2分)
(2)an= (3分)
(3)Sn=1- (5分)
21.解:依題意,直線斜率顯然存在,設(shè)直線斜率為k,則直線的方程為:y+1=kx
拋物線y=-與直線相交于A、B兩點(diǎn)
∴x2+2kx-2=0,∴△=4k2+8>0,
設(shè)A(x1,x2),B(x2,y2) 則x1+x2=-2k
∵kOA+KOB=1 ∴
∴即x1+x2=-2=-2k∴k=1
22.(1)a=1,b=3
(2)∵f(x)=x3+3x2在[m,m+1]上單調(diào)遞增
∴f′(x)=3x2+6x≥0,在[m,m+1]上
∵3x2+6x≥0, ∴x≥0或x≤-2
∴m+1≤-2或m≥0即m≤-3或m≥0
∴m的取值范圍是{m|m≤-3或m≥0}
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com