19.(注意:在試題卷上作答無(wú)效) 查看更多

 

題目列表(包括答案和解析)

本小題滿分12分)(注意:在試題卷上作答無(wú)效)ttp://wwwcom/gaokao/shandong/

   已知橢圓的離心率為其左、右焦點(diǎn)分別為,點(diǎn)是坐標(biāo)平面內(nèi)一點(diǎn),且為坐標(biāo)原點(diǎn))。

   (Ⅰ)求橢圓的方程;

   (Ⅱ)過(guò)點(diǎn)且斜率為k的動(dòng)直線交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

查看答案和解析>>

本小題滿分12分)(注意:在試題卷上作答無(wú)效)
設(shè)數(shù)列的前n項(xiàng)和為已知
(Ⅰ)設(shè)證明:數(shù)列是等比數(shù)列;
(Ⅱ)證明:.

查看答案和解析>>

本小題滿分12分)(注意:在試題卷上作答無(wú)效)

設(shè)數(shù)列的前n項(xiàng)和為已知

(Ⅰ)設(shè)證明:數(shù)列是等比數(shù)列;

(Ⅱ)證明:.

 

 

查看答案和解析>>

本小題滿分12分)(注意:在試題卷上作答無(wú)效)
設(shè)數(shù)列的前n項(xiàng)和為已知
(Ⅰ)設(shè)證明:數(shù)列是等比數(shù)列;
(Ⅱ)證明:.

查看答案和解析>>

(本小題滿分12分)(注意:在試題卷上作答無(wú)效)
△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.己知.
(Ⅰ)求B;
(Ⅱ)若.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

A

D

B

C

C

D

D

A

C

二、填空題

13.          14.                     15.4            16.③④

三、解答題

17.解:(1),

                                                                         (2分)

              又                                                      (4分)

              .                                                                            (6分)

       (2)

                                                                    (8分)

             

                                        (10分)

18.(1)證明:連結(jié)于點(diǎn),取的中點(diǎn),連結(jié),則//       依題意,知,

,且,

故四邊形是平行四邊形,

,即      (3分)

              又平面,平面

              平面,                (6分)

       (2)解:處長(zhǎng)的處長(zhǎng)線于點(diǎn),連結(jié),作,連結(jié)

∵平面平面,平面平面

平面

由三垂線定理,知,故就是三面角的平面角.(8分)

∵平面平面,平面平面

平面,故就是直線與平面成的角,   (10分)

              知設(shè),則

              在直三角形中:

              在直角三角形中:

              故三而角的大小為60°.                                                 (12分)

19.解:(1)記表示事無(wú)償援助,“取出的2件產(chǎn)品中無(wú)二等品”,

表示事件“取出的2件產(chǎn)品中恰有1件是二等品”。則、互斥,且

依題意,知,得                                      (6分)

       (2)(理)可能的取值為0,1,2,

              若該批產(chǎn)品共100件,由(1)知,其中共有二等品100×0.2=20件,故

              (9分)

0

1

2

              所以的分布列為

             

 

 

的期望                  (12分)

20.解:(1)上單調(diào)遞增,上單調(diào)遞減,

              有兩根,2,

                                   (4分)

              今

              因?yàn)?sub>上恒大于0,

所以上單調(diào)遞增,故

                                                                    (6分)

       (2)

                                                                                   (8分)

           ①當(dāng)時(shí),,定義域?yàn)?sub>

              恒成立,上單調(diào)遞增;                    (9分)

           ②當(dāng)時(shí),,定義域:

        恒成立,上單調(diào)遞增;             (10分)

           ③當(dāng)時(shí),  ,定義域:

              由,由

              故在上單調(diào)遞增;在上單調(diào)遞減.                      (11分)

              所以當(dāng)時(shí),上單調(diào)遞增,故無(wú)極值;

              當(dāng)時(shí),上單增;故無(wú)極值.

              當(dāng)時(shí),上單調(diào)遞增;在上單調(diào)遞減.

              故有極小值,且的極小值.        (12分)

 

21.解:(1)設(shè)依題意得

                                                                            (2分)

              消去,,整理得.                                                       (4分)

              當(dāng)時(shí),方程表示焦點(diǎn)在軸上的橢圓;

              當(dāng)時(shí),方程表示焦點(diǎn)在軸上的橢圓;

              當(dāng)時(shí),方程表示圓.                                                                       (6分)

       (2)當(dāng)時(shí),方程為設(shè)直線的方程為

                                                                                                 (8分)

              消去                                (10分)

              根據(jù)已知可得,故有

              直線的斜率為                                                           (12分)

22.證明:(1)即證

             

                                                                                                        (2分)

              假設(shè)

                                                     (4分)

             

             

              綜上所述,根據(jù)數(shù)學(xué)歸納法,命題成立                                                     (6分)

       (2)由(1),得

                                       (8分)

                          (10分)

              又                       (12分)

 

 

 

 


同步練習(xí)冊(cè)答案