(2)當(dāng)時(shí).過點(diǎn)的直線與曲線恰有一個(gè)公共點(diǎn).求直線的斜率. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
2

(1)求異面直線PC與AD所成角的大小;
(2)若平面ABCD內(nèi)有一經(jīng)過點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說(shuō)明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動(dòng)時(shí),試提出一個(gè)研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說(shuō)明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評(píng)分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
(1)求異面直線PC與AD所成角的大。
(2)若平面ABCD內(nèi)有一經(jīng)過點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說(shuō)明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動(dòng)時(shí),試提出一個(gè)研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說(shuō)明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評(píng)分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

C

C

B

B

A

B

C

D

C

D

二、填空題

13.2            14.                15.60          16.③④

三、解答題

17.解:(1),

                                                                         (2分)

              又                                                      (4分)

              .                                                                            (6分)

       (2)

                                                                    (8分)

             

                                        (10分)

18.(1)證明:連結(jié)于點(diǎn),取的中點(diǎn),連結(jié),則//      

依題意,知

,且

故四邊形是平行四邊形,

,即      (4分)

              又平面,

              平面,                (6分)

       (2)延長(zhǎng)的延長(zhǎng)線于點(diǎn),連結(jié),作點(diǎn),連結(jié)

∵平面平面,平面平面,

平面

平面,

由三垂線定理,知,故就是所求二面角的平面角.(8分)

∵平面平面,平面平面

平面,故就是直線與平面成的角,   (10分)

              知設(shè),則

              在中:

              在中:由,,知

              故平面與平面所成的銳二面角的大小為45°.                  (12分)

19.解:(1)記表示事無(wú)償援助,“取出的2伯產(chǎn)呂中無(wú)二等品”,表示事件“取出的2件產(chǎn)品中恰有1件是二等品”。則、互斥,且

依題意,知,得                                      (6分)

(2)若該批產(chǎn)品有100件,由(1)知,其中共有二等品100×0.2=20件

表示事件“取出的2件產(chǎn)品中無(wú)二等品”,則事件與事件互斥,

依題意,知

                                                                    (12分)

20.解:(1)上單調(diào)遞增,上單調(diào)遞減,

              有兩根,2,

                                                                              (6分)

(2)令

              因?yàn)?sub>上恒大于0,

所以,在上單調(diào)遞增,故

                                                                (12分)

21.(1)依題意,知

,得

,得                            4分

(2)依題意,知

,得

,得                    8分

(3)由、是相互垂直的單位向量,知,

記數(shù)列的前項(xiàng)和為,

則有

相減得,

                                                                      12分

22.解:(1)設(shè)依題意得

                                                                            (2分)

              消去,整理得.                                                       (4分)

              當(dāng)時(shí),方程表示焦點(diǎn)在軸上的橢圓;

              當(dāng)時(shí),方程表示焦點(diǎn)在軸上的橢圓;

              當(dāng)時(shí),方程表示圓.                                                                       (6分)

       (2)當(dāng)時(shí),方程為設(shè)直線的方程為

                                                                                                 (8分)

              消去                                 (10分)

              根據(jù)已知可得,故有

              直線的斜率為                                                           (12分)

 

 


同步練習(xí)冊(cè)答案