(Ⅲ)求面和面所成二面角的大小. 得分評卷人 查看更多

 

題目列表(包括答案和解析)

在四棱錐中,底面是直角梯形,,∠,平面⊥平面.

(1)求證:⊥平面;

(2)求平面和平面所成二面角(小于)的大;

(3)在棱上是否存在點使得∥平面?若存在,求的值;若不存在,請說明理由.

 

查看答案和解析>>

在四棱錐中,底面是直角梯形,,∠, ,平面⊥平面.

(1)求證:⊥平面;
(2)求平面和平面所成二面角(小于)的大小;
(3)在棱上是否存在點使得∥平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

在四棱錐中,底面是直角梯形,,∠, ,平面⊥平面.

(1)求證:⊥平面;
(2)求平面和平面所成二面角(小于)的大;
(3)在棱上是否存在點使得∥平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

己知在銳角ΔABC中,角所對的邊分別為,且

(I )求角大小;

(II)當(dāng)時,求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點,設(shè)直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側(cè)。

(1)求證:平面;

(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。

 


21.已知A,B是橢圓的左,右頂點,,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;

(2)如果當(dāng)時,都有恒成立,試求的取值范圍.

查看答案和解析>>

已知四棱錐的底面為直角梯形,,底面,且,,的中點。

(1)證明:面;

(2)求所成的角;

(3)求面與面所成二面角的余弦值.

【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.

(2)建立空間直角坐標(biāo)系,寫出向量的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.

(3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.

 

查看答案和解析>>


同步練習(xí)冊答案