題目列表(包括答案和解析)
MA |
MB |
MN |
OF |
NQ |
OF |
MA |
MB |
5 |
5 |
(1)求證的取值范圍;
(2)過A、B兩點分別作此拋物線的切線,兩切線相交于N點,
求證:;
(3)設(shè)直線AB與x軸、y軸的兩個交點分別為K和L,當(dāng)=4p2,△ABN的面積的取值范圍限定為[]時,求動線段KL的軌跡所形成的平面區(qū)域的面積.
(1)求的取值范圍;
(2)過A、B兩點分別作此拋物線的切線,兩切線相交于N點,求證=0, .
直線AB過拋物線x2=2py(p0)的焦點F,并與其相交于A、B兩點.Q是線段AB的中點,M是拋物線的準(zhǔn)線與y軸的交點.O是坐標(biāo)原點.
(Ⅰ)求的取值范圍;
(Ⅱ)過A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證:;
(Ⅲ)若P是不為1的正整數(shù),當(dāng),△ABN的面積的取值范圍為時,求該拋物線的方程.
一、選擇題:(每小題5分,共50分)
題號
1
2
3
4
5
6
7
8
9
10
答案
B
D
B
A
C
C
D
A
A
B
二、填空題:(每小題4分,共24分)
11.; 12.; 13.; 14.; 15.4 16.120
三、解答題:(共76分,以下各題為累計得分,其他解法請相應(yīng)給分)
17.解:(I)
由,得。
又當(dāng)時,得
(Ⅱ)當(dāng)
即時函數(shù)遞增。
故的單調(diào)增區(qū)間為,
又由,得,
由
解得
故使成立的的集合是
18.解:(I)設(shè)袋中有白球個,由題意得,
即
解得或(舍),故有白球6個
(法二,設(shè)黑球有個,則全是黑球的概率為 由
即,解得或(舍),故有黑球4個,白球6個
(Ⅱ),
0
1
2
3
P
故分布列為
數(shù)學(xué)期望
19.解:(I)取AB的中點O,連接OP,OC PA=PB POAB
又在中,,
在中,,又,故有
又,面ABC
又PO面PAB,面PAB面ABC
(Ⅱ)以O(shè)為坐標(biāo)原點, 分別以O(shè)B,OC,OP為軸,軸,軸建立坐標(biāo)系,
如圖,則A
設(shè)平面PAC的一個法向量為。
得
令,則
設(shè)直線PB與平面PAC所成角為
于是
20.解:(I)由題意設(shè)C的方程為由,得。
設(shè)直線的方程為,由
②代入①化簡整理得
因直線與拋物線C相交于不同的兩點,
故
即,解得又時僅交一點,
(Ⅱ)設(shè),由由(I)知
21.解:(I)當(dāng)時,
設(shè)曲線與在公共點()處的切線相同,則有
即 解得或(舍)
又故得公共點為,
切線方程為 ,即
(Ⅱ),設(shè)在()處切線相同,
故有
即
由①,得(舍)
于是
令,則
于是當(dāng)即時,,故在上遞增。
當(dāng),即時,,故在上遞減
在處取最大值。
當(dāng)時,b取得最大值
22.解:(I)的對稱軸為,又當(dāng)時,,
故在[0,1]上是增函數(shù)
即
(Ⅱ)
由
得
①―②得 即
當(dāng)時,,當(dāng)時,
于是
設(shè)存在正整數(shù),使對,恒成立。
當(dāng)時,,即
當(dāng)時,
。
當(dāng)時,,當(dāng)時,,當(dāng)時,
存在正整數(shù)或8,對于任意正整數(shù)都有成立。
www.ks5u.com
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com