題目列表(包括答案和解析)
三棱柱中,側(cè)棱與底面垂直,,,分別是,的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
【解析】第一問利連結(jié),,∵M(jìn),N是AB,的中點(diǎn)∴MN//.
又∵平面,∴MN//平面. ----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形是正方形.∴.∴.連結(jié),.
∴,又N中的中點(diǎn),∴.
∵與相交于點(diǎn)C,∴MN平面. --------------9分
⑶中由⑵知MN是三棱錐M-的高.在直角中,,
∴MN=.又..得到結(jié)論。
⑴連結(jié),,∵M(jìn),N是AB,的中點(diǎn)∴MN//.
又∵平面,∴MN//平面. --------4分
⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,
∴四邊形是正方形.∴.
∴.連結(jié),.
∴,又N中的中點(diǎn),∴.
∵與相交于點(diǎn)C,∴MN平面. --------------9分
⑶由⑵知MN是三棱錐M-的高.在直角中,,
∴MN=.又.
如圖,在三棱柱中,側(cè)面,為棱上異于的一點(diǎn),,已知,求:
(Ⅰ)異面直線與的距離;
(Ⅱ)二面角的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標(biāo)系
解:(I)以B為原點(diǎn),、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,
在三棱柱中有
,
設(shè)
又側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.
(II)由已知有故二面角的平面角的大小為向量與的夾角.
如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分別交AC.PC于D.E兩點(diǎn),又PB=BC,PA=AB.
(Ⅰ)求證:PC⊥平面BDE;
(Ⅱ)若點(diǎn)Q是線段PA上任一點(diǎn),求證:BD⊥DQ;
(Ⅲ)線段PA上是否存在點(diǎn)Q,使得PC//平面BDQ.若存在,求出點(diǎn)的位置,若不存在,說明理由.
(本小題滿分12分)如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分別交AC、PC于D、E兩點(diǎn),又PB=BC,PA=AB.
(Ⅰ)求證:PC⊥平面BDE;
(Ⅱ)若點(diǎn)Q是線段PA上任一點(diǎn),求證:BD⊥DQ;
(Ⅲ)線段PA上是否存在點(diǎn)Q,使得PC//平面BDQ.若存在,求出點(diǎn)的位置,若不存在,說明理由.
下列推理是類比推理的是( )
A.由數(shù)列 ,猜測出該數(shù)列的通項(xiàng)為
B. 平面內(nèi)不共線的三點(diǎn)確定一個(gè)圓,由此猜想空間不共面的三點(diǎn)確定一個(gè)球
C.垂直于同一平面的兩條直線平行,又直線,直線,推出
D.由,推出
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com