(Ⅰ)已知函數(shù),(其中),過圖象是任意一點的切線將正方形截成兩部分,設點的橫坐標為,表示正方形被切線所截的左下部分的面積,求的解析式, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導性).

查看答案和解析>>

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關于x的方程:數(shù)學公式在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得數(shù)學公式.如我們所學過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,數(shù)學公式(可不用證明函數(shù)的連續(xù)性和可導性).

查看答案和解析>>

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關于x的方程:在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導數(shù)都存在,則在(a,b)內(nèi)至少存在一點x,使得.如我們所學過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導性).

查看答案和解析>>

已知二次函數(shù)f(x)的圖象過點(0,4),對任意x滿足f(3-x)=f(x),且有最小值是
74
.g(x)=2x+m.
(Ⅰ)求f(x)的解析式;
(Ⅱ) 求函數(shù)h(x)=f(x)-(2t-3)x在區(qū)間[0,1]上的最小值,其中t∈R;
(Ⅲ)設f(x)與g(x)是定義在同一區(qū)間[p,q]上的兩個函數(shù),若函數(shù)F(x)=f(x)-g(x)在x∈[p,q]上有兩個不同的零點,則稱f(x)和g(x)在[p,q]上是“關聯(lián)函數(shù)”,區(qū)間[p,q]稱為“關聯(lián)區(qū)間”.若f(x)與g(x)在[0,3]上是“關聯(lián)函數(shù)”,求m的取值范圍.

查看答案和解析>>

有如下四個命題:

①已知函數(shù)(b為實常數(shù),e是自然對數(shù)的底數(shù)),若f(x)在區(qū)間[1,+∞)內(nèi)為減函數(shù),則b的取值范圍是(0,+∞).

②已知點A(x1,y1),B(x2,y2)是函數(shù)y=sinx(-π<x<0)圖象上的兩個不同點,則一定有;

③已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意的a,b∈R,滿足:f(ab)=af(b)+bf(a),f(2)=2,an(n∈N*),則數(shù)列{an}一定為等差數(shù)列

④已知O是△ABC所在平面上一定點,動點P滿足:.則P點的軌跡一定通過△ABC的重心其中正確命題的序號為________

查看答案和解析>>


同步練習冊答案