則是區(qū)間[1,2]上的增函數(shù), 所以; --- 3分 查看更多

 

題目列表(包括答案和解析)

如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

(1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對所有恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及,

第三問 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時,可求得,命題成立; ……………2分

②假設(shè)當(dāng)時,命題成立,即有,……………………1分

則當(dāng)時,由歸納假設(shè)及

解得不合題意,舍去)

即當(dāng)時,命題成立.  …………………………………………4分

綜上所述,對所有,.    ……………………………1分

(3) 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值

(2)當(dāng)時,若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍

【解析】(1) 

∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線

,

(2)當(dāng)時,,,

,則,令,為單調(diào)遞增區(qū)間,為單調(diào)遞減區(qū)間,其中F(-3)=28為極大值,所以如果區(qū)間[k,2]最大值為28,即區(qū)間包含極大值點(diǎn),所以

【考點(diǎn)定位】此題應(yīng)該說是導(dǎo)數(shù)題目中較為常規(guī)的類型題目,考查的切線,單調(diào)性,極值以及最值問題都是課本中要求的重點(diǎn)內(nèi)容,也是學(xué)生掌握比較好的知識點(diǎn),在題目中能夠發(fā)現(xiàn)F(-3)=28,和分析出區(qū)間[k,2]包含極大值點(diǎn),比較重要

 

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時,,故. …………5分

所以.                 …………6分

(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點(diǎn),,

當(dāng),即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

已知點(diǎn)P在半徑為1的半圓周上沿著APB路徑運(yùn)動,設(shè)弧   的長度為x,弓形面積為(如圖所示的陰影部分),則關(guān)于函數(shù)的有如下結(jié)論:

①函數(shù)的定義域和值域都是

②如果函數(shù)的定義域R,則函數(shù)是周期函數(shù);

③如果函數(shù)的定義域R,則函數(shù)是奇函數(shù);

④函數(shù)在區(qū)間上是單調(diào)遞增函數(shù).

以上結(jié)論的正確個數(shù)是(  )

A.1            B.2          C.3             D.4

 

查看答案和解析>>

已知點(diǎn)P在半徑為1的半圓周上沿著A→P→B路徑運(yùn)動,設(shè)弧的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:

①函數(shù)y=f(x)的定義域和值域都是[0,π];

②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);

③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);

④函數(shù)y=f(x)在區(qū)間[0,π]上是單調(diào)遞增函數(shù).

以上結(jié)論的正確個數(shù)是

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>


同步練習(xí)冊答案