1.[臺(tái)州市?理]6.在中.若=1,C=, =則A的值為 A 查看更多

 

題目列表(包括答案和解析)

為了解某班學(xué)生喜愛(ài)打羽毛球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

 

 

喜愛(ài)打羽毛球

不喜愛(ài)打羽毛球

合計(jì)

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中隨機(jī)抽取1人抽到不喜愛(ài)打羽毛球的學(xué)生的概率

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有99.5%的把握認(rèn)為喜愛(ài)打羽毛球與性別有關(guān)?說(shuō)明你的理由;

(3)已知喜愛(ài)打羽毛球的10位女生中,還喜歡打籃球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進(jìn)行其他方面的調(diào)查,求女生不全被選中的概率.下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(參考公式:其中.)

【解析】第一問(wèn)利用數(shù)據(jù)寫(xiě)出列聯(lián)表

第二問(wèn)利用公式計(jì)算的得到結(jié)論。

第三問(wèn)中,從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:

, ,

基本事件的總數(shù)為8

表示“不全被選中”這一事件,則其對(duì)立事件表示“全被選中”這一事件,由于 2個(gè)基本事件由對(duì)立事件的概率公式得

解:(1) 列聯(lián)表補(bǔ)充如下:

 

 

喜愛(ài)打羽毛球

不喜愛(ài)打羽毛球

合計(jì)

男生

20

25

女生

10

15

25

合計(jì)

30

20

50

(2)∵

∴有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)

(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:

, 

基本事件的總數(shù)為8,

表示“不全被選中”這一事件,則其對(duì)立事件表示“全被選中”這一事件,由于 2個(gè)基本事件由對(duì)立事件的概率公式得.

 

查看答案和解析>>

為了收集2009年7月“長(zhǎng)江日全食”天象的有關(guān)數(shù)據(jù),國(guó)家天文臺(tái)在成都、武漢各設(shè)置了A、B兩個(gè)最佳觀測(cè)站,共派出11名研究員分別前往兩地實(shí)地觀測(cè).原計(jì)劃向成都派出3名研究員去A觀測(cè)站,2名研究員去B觀測(cè)站;向武漢派出3名研究員去A觀測(cè)站,3名研究員去B觀測(cè)站,并都已指定到人.由于某種原因,出發(fā)前夕要從原計(jì)劃派往成都的5名研究員中隨機(jī)抽調(diào)1人改去武漢,同時(shí),從原計(jì)劃派往武漢的6名研究員中隨機(jī)抽調(diào)1人改去成都,且被抽調(diào)的研究員仍按原計(jì)劃去A觀測(cè)站或B觀測(cè)站工作.求:
(I)派往兩地的A、B兩個(gè)觀測(cè)站的研究員人數(shù)不變的概率;
(II)在成都A觀測(cè)站的研究員人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

在一次購(gòu)物活動(dòng)中,假設(shè)6張獎(jiǎng)券中有一等獎(jiǎng)1張,可獲得50元獎(jiǎng)金;有二等獎(jiǎng)2張,每張可獲20元獎(jiǎng)金,其余3張沒(méi)有獎(jiǎng),某顧客從中任取2張,求:
(1)該顧客獲獎(jiǎng)的概率;
(2)該顧客獲得獎(jiǎng)金不低于50元的概率.

查看答案和解析>>

為了解某班學(xué)生喜愛(ài)打羽毛球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

喜愛(ài)打羽毛球 不喜愛(ài)打羽毛球 合計(jì)
男生
20
20
5
25
25
女生 10
15
15
25
25
合計(jì)
合計(jì)
30
30
20
20
50
已知在全部50人中隨機(jī)抽取1人抽到不喜愛(ài)打羽毛球的學(xué)生的概率
2
5

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛(ài)打羽毛球與性別有關(guān)?說(shuō)明你的理由;
(3)已知喜愛(ài)打羽毛球的10位女生中,A1,A2還喜歡打籃球,B1,B2還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進(jìn)行其他方面的調(diào)查,求女生B1和C1不全被選中的概率.下面的臨界值表供參考:
P(Χ2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)

查看答案和解析>>

在m(m≥2)個(gè)不同數(shù)的排列P1P2…Pn中,若1≤i<j≤m時(shí)Pi>Pj(即前面某數(shù)大于后面某數(shù)),則稱Pi與Pj構(gòu)成一個(gè)逆序.一個(gè)排列的全部逆序的總數(shù)稱為該排列的逆序數(shù).記排列(n+1)n(n-1)…321的逆序數(shù)為an,如排列21的逆序數(shù)a1=1,排列321的逆序數(shù)a3=6.
(Ⅰ)求a4、a5,并寫(xiě)出an的表達(dá)式;
(Ⅱ)令bn=
an
an+1
+
an+1
an
,證明2n<b1+b2+…+bn<2n+3,n=1,2,….

查看答案和解析>>


同步練習(xí)冊(cè)答案