(Ⅲ) 若.且至少存在三個不同的值使得等式成立.試求.的值. 揚州市2008―2009學年度第一學期期未調研測試試題高 三 數(shù) 學第二部分(總分40分.加試時間30分鐘)注意事項:答卷前.請考生務必將自己的學校.姓名.考試號等信息填寫在答卷密封線內.解答過程應寫在答題卷的相應位置上.在其它地方答題無效. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系中,已知三個點列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),滿足向量
AnAn+1
與向量
BnCn
平行,并且點列{Bn}在斜率為6的同一直線上,n=1,2,3,….
(1)證明:數(shù)列{bn}是等差數(shù)列;
(2)試用a1,b1與n表示an(n≥2);
(3)設a1=a,b1=-a,是否存在這樣的實數(shù)a,使得在a6與a7兩項中至少有一項是數(shù)列{an}的最小項?若存在,請求出實數(shù)a的取值范圍;若不存在,請說明理由;
(4)若a1=b1=3,對于區(qū)間[0,1]上的任意λ,總存在不小于2的自然數(shù)k,當n≥k時,an≥(1-λ)(9n-6)恒成立,求k的最小值.

查看答案和解析>>

在平面直角坐標系中,已知三個點列,其中,滿足向量與向量平行,并且點列在斜率為6的同一直線上,

證明:數(shù)列是等差數(shù)列;

試用表示;

,是否存在這樣的實數(shù),使得在兩項中至少有一項是數(shù)列的最小項?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由;

,對于區(qū)間[0,1]上的任意l,總存在不小于2的自然數(shù)k,當n??k時,恒成立,求k的最小值.

查看答案和解析>>

給定平面上的點集P={P1,P2,…,P1994},P中任三點均不共線,將P中的所有的點任意分成83組,使得每組至少有3個點,且每點恰好屬于一組,然后將在同一組的任兩點用一條線段相連,不在同一組的兩點不連線段,這樣得到一個圖案G,不同的分組方式得到不同的圖案,將圖案G中所含的以P中的點為頂點的三角形個數(shù)記為m(G).
(1)求m(G)的最小值m0
(2)設G*是使m(G*)=m0的一個圖案,若G*中的線段(指以P的點為端點的線段)用4種顏色染色,每條線段恰好染一種顏色.證明存在一個染色方案,使G*染色后不含以P的點為頂點的三邊顏色相同的三角形.

查看答案和解析>>

給定平面上的點集P={P1,P2,…,P1994},P中任三點均不共線,將P中的所有的點任意分成83組,使得每組至少有3個點,且每點恰好屬于一組,然后將在同一組的任兩點用一條線段相連,不在同一組的兩點不連線段,這樣得到一個圖案G,不同的分組方式得到不同的圖案,將圖案G中所含的以P中的點為頂點的三角形個數(shù)記為m(G).
(1)求m(G)的最小值m
(2)設G*是使m(G*)=m的一個圖案,若G*中的線段(指以P的點為端點的線段)用4種顏色染色,每條線段恰好染一種顏色.證明存在一個染色方案,使G*染色后不含以P的點為頂點的三邊顏色相同的三角形.

查看答案和解析>>

已知等差數(shù)列{an}的首項為a,公差為b,等比數(shù)列{bn}的首項為b,公比為a(其中a,b均為正整數(shù)).
(Ⅰ)若a1=b1,a2=b2,求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)在(Ⅰ)的條件下,若(3<n1<n2<…<nk<…)成等比數(shù)列,求數(shù)列{nk}的通項公式;
(Ⅲ)若a1<b1<a2<b2<a3,且至少存在三個不同的b值使得等式am+t=bn(t∈N)成立,試求a、b的值.

查看答案和解析>>


同步練習冊答案