題目列表(包括答案和解析)
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點的直線與線段分別相交于點。若。
(1)求證:與的關系為;
(2)設,定義函數,點列在函數的圖像上,且數列是以首項為1,公比為的等比數列,為原點,令,是否存在點,使得?若存在,請求出點坐標;若不存在,請說明理由。
(3)設函數為上偶函數,當時,又函數圖象關于直線對稱, 當方程在上有兩個不同的實數解時,求實數的取值范圍。
(本題滿分12分)
為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯表補充完整;
(2)是否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由;
(3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,還喜歡打乒乓球,還喜歡踢足球,現再從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進行其他方面的調查,求和不全被選中的概率.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
(本小題滿分16分)已知函數是定義在上的奇函數,當時, (其中e是自然界對數的底,)(1)求的解析式;(2)設,求證:當時,;(3)是否存在實數a,使得當時,的最小值是3 ?如果存在,求出實數a的值;如果不存在,請說明理由。
(本題滿分14分)已知數列中,且點在直線上. (1)求數列的通項公式; (2)若函數求函數的最小值; (3)設表示數列的前項和.試問:是否存在關于的整式,使得對于一切不小于2的自然數恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由.
(本題滿分14分)設,方程有唯一解,已知,且
(1)求數列的通項公式;
(2)若,求和;
(3)問:是否存在最小整數,使得對任意,有成立,若存在;求出的值;若不存在,說明理由。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com