(2)求證:平面平面,學(xué)科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)學(xué)科網(wǎng)已知直四棱柱ABCDA1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F為棱BB1學(xué)科網(wǎng)              的中點(diǎn),M為線段AC1的中點(diǎn).學(xué)科網(wǎng)

   (1)求證:直線MF∥平面ABCD學(xué)科網(wǎng)

   (2)求證:平面AFC1⊥平面ACC1A1;學(xué)科網(wǎng)

   (3)求平面AFC1與與平面ABCD所成二面角的大小.學(xué)科網(wǎng)

學(xué)科網(wǎng)

查看答案和解析>>

(本小題滿分12分)

如圖所示,四棱錐中,底面為正方形,平面,,,分別為、、的中點(diǎn).

(1)求證:;;

(2)求三棱錐的體積.                        [來源:學(xué)*科*網(wǎng)]

 

查看答案和解析>>

(本小題滿分13分)如圖,四面體ABCD中,O是BD的中點(diǎn),

ABD和BCD均為等邊三角形,AB=2,學(xué)科網(wǎng)AC=

(1)求證:AO⊥平面BCD; (2)求二面角A—BC—D的大。

   (3)求O點(diǎn)到平面ACD的距離。

查看答案和解析>>

 2.正方體.ABCD- 的棱長為l,點(diǎn)F為的中點(diǎn).學(xué)科網(wǎng)

(I)證明: ∥平面AFC;.學(xué)科網(wǎng)

         (Ⅱ)求二面角B-AF-一-C的大小.學(xué)科網(wǎng)

學(xué)科網(wǎng)

學(xué)科網(wǎng)

學(xué)科網(wǎng)

學(xué)科網(wǎng)

學(xué)科網(wǎng)

學(xué)科網(wǎng)

學(xué)科網(wǎng)

查看答案和解析>>

(本小題滿分12分)
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
(I)當(dāng)x=2時(shí),求證:BD⊥EG ;
(II)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,
的最大值;
(III)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.
[來源:學(xué)科網(wǎng)ZXXK]

查看答案和解析>>

或7                   ………………………………14分

16.(本小題滿分14分)

(1)證明:E、P分別為AC、A′C的中點(diǎn),

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)證明:在△A′EC中,P為A′C的中點(diǎn),∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

                    …………………………………………15分

(本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

18.(本小題滿分15分)

(1)延長BD、CE交于A,則AD=,AE=2

     則S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    當(dāng),

,            

…………………………………………15分

(3)

設(shè)上式為 ,假設(shè)取正實(shí)數(shù),則?

當(dāng)時(shí),,遞減;

當(dāng),遞增. ……………………………………12分

                

    

∴不存在正整數(shù),使得

                  …………………………………………16分

,顯然成立             ……………………………………12分

當(dāng)時(shí),

使不等式成立的自然數(shù)n恰有4個(gè)的正整數(shù)p值為3

                          ……………………………………………16分

 

 

 

 

 

 

 

泰州市2008~2009學(xué)年度第二學(xué)期期初聯(lián)考

高三數(shù)學(xué)試題參考答案

附加題部分

度單位.(1),,由

所以

為圓的直角坐標(biāo)方程.  ……………………………………3分

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

D.證明:(1)因?yàn)?sub>

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,,……………………………………8分

    三式相加即得……………………………10分

22.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為

(1),,

,

              ……………………………………3分

(2)平面BDD1的一個(gè)法向量為

設(shè)平面BFC1的法向量為

得平面BFC1的一個(gè)法向量

∴所求的余弦值為                     ……………………………………6分

(3)設(shè)

,由

,

當(dāng)時(shí),

當(dāng)時(shí),∴   ……………………………………10分

 


同步練習(xí)冊(cè)答案