表1是第15屆多哈亞運(yùn)會(huì)上五個(gè)獲得金牌總數(shù)最多的代表團(tuán)的獎(jiǎng)牌統(tǒng)計(jì)表(數(shù)據(jù)來源:http://www.xinhuanet.com/sports/doha2006/).根據(jù)表1中金牌數(shù)這一列數(shù)據(jù).制成圖10.1和10.2的統(tǒng)計(jì)圖. 表1: 第15屆亞運(yùn)會(huì)獎(jiǎng)牌榜國家/地區(qū)金牌銀牌銅牌獎(jiǎng)牌總數(shù)中國1658863316韓國585382193日本507177198哈薩克斯坦23194385泰國13152654其他119略略略 查看更多

 

題目列表(包括答案和解析)

(本題滿分10分) 下表是2011年12月的日歷表,請(qǐng)解答問題:在表中用形如下圖的平行四邊形框框出4個(gè)數(shù),

⑴若框出的4個(gè)數(shù)的和為74,請(qǐng)你通過列方程的辦法,求出它分別是哪4天?

⑵框出的4個(gè)數(shù)的和可能是26嗎?為什么?

 

星期日

星期一

星期二

星期三

星期四

星期五

星期六

 

 

 

   1

   2

   3

   4

   5

   6

   7

   8

   9

   10

11

   12

   13

   14

  15

  16

   17

   18

   19

   20

   21

  22

  23

   24

   25

   26

   27

   28

  29

  30

   31

 

 

 

查看答案和解析>>

(本題滿分10分) 下表是2011年12月的日歷表,請(qǐng)解答問題:在表中用形如下圖的平行四邊形框框出4個(gè)數(shù),

⑴若框出的4個(gè)數(shù)的和為74,請(qǐng)你通過列方程的辦法,求出它分別是哪4天?

⑵框出的4個(gè)數(shù)的和可能是26嗎?為什么?

 

星期日

星期一

星期二

星期三

星期四

星期五

星期六

 

 

 

   1

   2

   3

   4

   5

   6

   7

   8

   9

   10

11

   12

   13

   14

  15

  16

   17

   18

   19

   20

   21

  22

  23

   24

   25

   26

   27

   28

  29

  30

   31

 

 

 

查看答案和解析>>

(11·貴港)(本題滿分11分)
如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于點(diǎn)B,大圓的弦BC⊥AB于點(diǎn)B,過點(diǎn)C作大圓的切線CD交AB的延長線于點(diǎn)D,連接OC交小圓于點(diǎn)E,連接BE、BO.

(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長為y:
①求y與x之間的函數(shù)關(guān)系式;
②當(dāng)BE與小圓相切時(shí),求x的值.

查看答案和解析>>

(本題滿分11分)
在一個(gè)暗箱中,放有大小和質(zhì)量都相同的紅、黃、綠、黑四種顏色的球若干個(gè).現(xiàn)從中任意摸出一個(gè)球,球摸出后仍放回箱內(nèi).若得到紅球的概率為,得到黃球的概率為,得到綠球的概率為.已知暗箱中黑球有15個(gè),問袋中原有紅球、黃球、綠球各多少個(gè)?

查看答案和解析>>

(本題滿分11分)

如圖所示,⊙的直徑是它的兩條切線,為射線上的動(dòng)點(diǎn)(不與重合),切⊙,交,設(shè)

(1)求的函數(shù)關(guān)系式;

(2)若⊙與⊙外切,且⊙分別與

相切于點(diǎn),求為何值時(shí)⊙半徑為1.

 

查看答案和解析>>

一、選擇題  BDACA  BCBCD

二、填空題

11.4      12. 2      13. 答案不唯一(如:y=x+1,y=x-3…等等.)     14. 107

15.      16. 35     17. 10      18. 18

三、解答題

19.由(1)與(2)組成的代數(shù)的和(選擇其他組合可參照本題標(biāo)準(zhǔn)給分).

+                                …………………………(1分)

                                …………………………(4分)

                                     …………………………(6分)

                                …………………………(8分)

                                      …………………………(10分)

注: 代數(shù)式(1)與(3)的和為;代數(shù)式(2)與(3)的和為.

20.(1)畫圖正確.                           ………………………………(3分)

(2)316, 165, 38.6(或38.4), 139, 13.6(或13.4)    …………………(8分)

21.設(shè)該公司招聘軟件推銷人員為x人,軟件設(shè)計(jì)人員為y人,      ………(1分)

依題意,得                ……………………(6分)

        解這個(gè)方程組,得                     …………………………(9分)

        答:該公司招聘軟件推銷人員為50人,軟件設(shè)計(jì)人員為70人.    ……(10分)

       (注:其他解法參照上述標(biāo)準(zhǔn)給分.)

22.所畫的兩個(gè)圖案中,有一個(gè)圖案只是軸對(duì)稱(或只是中心對(duì)稱)的給4分,另一個(gè)圖案既是軸對(duì)稱圖形又是中心對(duì)稱圖形的給6分.答案不唯一,以下設(shè)計(jì)圖案僅供參考.

 

 

 

 

 

 

 

 

 

 

23.(1)∵ 四邊形ABCD是正方形,BD是對(duì)角線,且MN∥DC,

∴ 四邊形AMNB和四邊形MNCD都是矩形,          

△MED和△NBE都是等腰直角三角形.      

             ∴ ∠AME=∠ENF=90°,AM=BN=NE.        …………………………(3分)

∴ ∠EFN+∠FEN=90°.                  …………………………(4分)

又∵ EF⊥AE,

∴ ∠AEM+∠FEN=90°,                 …………………………(5分)

∴ ∠EFN=∠AEM ,                     …………………………(6分)

∴ △AME≌△ENF.                      …………………………(7分)

(2)四邊形AFNM的面積沒有發(fā)生變化.         …………………………(8分)

(?)當(dāng)點(diǎn)E運(yùn)動(dòng)到BD的中點(diǎn)時(shí),

四邊形AFNM是矩形,S四邊形AFNM=.           ………………(9分)

(?)當(dāng)點(diǎn)E不在BD的中點(diǎn)時(shí),點(diǎn)E在運(yùn)動(dòng)(與點(diǎn)B、D不重合)的過程中,四邊形AFNM是直角梯形. 

由(1)知,△AME≌△ENF.

同理,圖12.2中,△AME≌△ENF.

∴ ME=FN,AM=EN.  

∴ AM+FN=MN=DC=1.                    …………………………(11分)

這時(shí) S四邊形AFNM=(AM+FN)?DC=?1?1=

綜合(?)、(?)可知四邊形AFNM的面積是一個(gè)定值. …………(12分)

24.(1)∵ 拋物線經(jīng)過O(0,0),A(4,0),B(3,),

 .解得  .    ………(2分)

∴ 所求拋物線的函數(shù)關(guān)系式為.    ………………(3分)

(注:用其它方法求拋物線的函數(shù)關(guān)系式參照以上標(biāo)準(zhǔn)給分.)

(2)① 過點(diǎn)B作BE⊥軸于E,則BE=,AE=1,AB=2. 

由tan∠BAE=,得∠BAE =60°.              …………(4分)

      (?)當(dāng)點(diǎn)Q在線段AB上運(yùn)動(dòng),即0<≤2時(shí),QA=t,PA=4-.

過點(diǎn)Q作QF⊥軸于F,則QF=,

            ∴ S=PA?QF

.   ……(6分)

      (?)當(dāng)點(diǎn)Q在線段BC上運(yùn)動(dòng),即2≤<4時(shí),Q點(diǎn)的縱坐標(biāo)為,PA=4-.

這時(shí),S=.     ……………………(8分)

②(?)當(dāng)0<≤2時(shí),.

           ∵ ,∴ 當(dāng)=2時(shí),S有最大值,最大值S=. ……(9分)

(?)當(dāng)2≤<4時(shí),

           ∵ , ∴ S隨著的增大而減小.

∴ 當(dāng)=2時(shí),S有最大值,最大值.

          綜合(?)(?),當(dāng)=2時(shí),S有最大值,最大值為. ……(10分)

△PQA是等邊三角形.                …………………………(11分)

③ 存在.                                 …………………………(12分)

當(dāng)點(diǎn)Q在線段AB上運(yùn)動(dòng)時(shí),要使得△PQA是直角三角形,必須使得∠PQA =90°,這時(shí)PA=2QA,即4-=2,∴ .

∴ P、Q兩點(diǎn)的坐標(biāo)分別為P1(,0),Q1(,).        ……(13分)

當(dāng)點(diǎn)Q在線段BC上運(yùn)動(dòng)時(shí),Q、P兩點(diǎn)的橫坐標(biāo)分別為5-,要使得△PQA是直角三角形,則必須5-=,∴

∴ P、Q兩點(diǎn)的坐標(biāo)分別為P2(,0),Q2(,).  ………………(14分)

(注:用其它方法求解參照以上標(biāo)準(zhǔn)給分.)

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案