20. 查看更多

 

題目列表(包括答案和解析)

本題滿分14分)已知函數(shù),,其中.w.w.w.k.s.5.u.c.o.m    

   (I)設函數(shù).若在區(qū)間上不單調(diào),求的取值范圍;

   (II)設函數(shù)  是否存在,對任意給定的非零實數(shù),存在惟一的非零實數(shù)),使得成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

(本題滿分14分) 若F1、F2為雙曲線的左、右焦點,O為坐標原點,P在雙曲線左支上,M在右準線上,且滿足(Ⅰ)求此雙曲線的離心率;(Ⅱ)若此雙曲線過點,求雙曲線方程;(Ⅲ)設(Ⅱ)中雙曲線的虛軸端點為B1,B2(B1在y軸正半軸上),求B2作直線AB與雙曲線交于A、B兩點,求時,直線AB的方程.

查看答案和解析>>

(本題滿分14分)某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2000平方米的樓房。經(jīng)測算,如果將樓房建為x(x ≥ 10)層,則每平方米的平均建筑費用為560 + 48x(單位:元).⑴寫出樓房平均綜合費用y關于建造層數(shù)x的函數(shù)關系式;

⑵該樓房應建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

(注:平均綜合費用 = 平均建筑費用 + 平均購地費用,平均購地費用 = )

查看答案和解析>>

(本題滿分14分)如圖,已知二次函數(shù),直線lx = 2,直線ly = 3tx(其中1< t < 1,t為常數(shù));若直線l、l與函數(shù)的圖象所圍成的封閉圖形如圖(5)陰影所示.(1)求y = ;(2)求陰影面積s關于t的函數(shù)s = u(t)的解析式;(3)若過點A(1,m)(m≠4)可作曲線s=u(t)(tR)的三條切線,求實數(shù)m的取值范圍.

查看答案和解析>>

(本題滿分14分)

在梯形ABCD中,AB⊥AD,AB∥CD,A、B是兩個定點,其坐

標分別為(0,-1)、(0,1),C、D是兩個動點,且滿足|CD|=|BC|.

(1)求動點C的軌跡E的方程;

(2)試探究在軌跡E上是否存在一點P?使得P到直線y=x-2的

距離最短;

(3)設軌跡E與直線所圍成的圖形的

面積為S,試求S的最大值。

其它解法請參照給分。

查看答案和解析>>

一.選擇題 (本大題共10小題,每題5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.B;    7.B;    8.B;    9.D;     10.B;

二.填空題 (本大題共7小題,每題4分,共28分)

11.;  12.; ;   14.,;  15.;  16.;  17.

三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.解:(1)因為,所以,得…………3分

    又因為…………………………………3分

(2)由,得,…………………………………2分

    所以,…………………………………2分

    ,…………………………………2分

    ………………………………2分

19.如圖建立空間直角坐標系,                  

 則,

……………………1分

    (1),………………1分

        ,……………………1分

        ……………………1分

      ∴,……2分

     又相交,所以平面……1分

(2)設平面的一個法向量為

因為,所以可取…………………………………………………2分

又平面的一個法向量為……………………………………………2分

  …………………………2分

∴二面角的大小為……………………………………………1分

20.解:(1)拋一次骰子面朝下的點數(shù)有l(wèi)、2、3、4四種情況,

而點數(shù)大于2的有2種,故闖第一關成功的概率……………………2分

(2)記事件“拋擲次骰子,各次面朝下的點數(shù)之和大于”為事件

,

拋二次骰子面朝下的點數(shù)和

情況如右圖所示,

…………………………………………2分

拋三次骰子面朝下的點數(shù)依次記為:

考慮的情況

時,有1種,時,有3種

時,有6種,時,有10種

……………………………4分

由題意知可取0、1、2、3,

,………………………1分

,………………………1分

,………………………1分

,………………………1分

的分布列為:

 

 

 

   ……………………2分

21.(1)法一:由已知………………………………1分

    設,則,……………………………1分

    ,………………………1分

    由得,,

解得………………………2分

法二:記A點到準線距離為,直線的傾斜角為,

由拋物線的定義知,………………………2分

………………………3分

(2)設,,

,………………………1分

首先由

,同理……………………2分

,…………………………2分

即:,

    ∴,…………………………2分

,得,

得,

的取值范圍為…………………………3分

22.(1)時,,

,………………………2分

所以切線方程為………………………2分

(2)1°當時,,則

,,

再令,

,∴上遞減,

∴當時,,

,所以上遞增,,

所以……………………5分

時,,則

由1°知當,上遞增

時,,

所以上遞增,∴

;………………………5分

由1°及2°得:………………………1分

 

 

命題人

呂峰波(嘉興)、 王書朝(嘉善)、 王云林(平湖)

胡水林(海鹽)、 顧貫石(海寧)、  張曉東(桐鄉(xiāng))

     吳明華、張啟源、徐連根、洗順良、李富強、吳林華

 


同步練習冊答案