24.(x 2-2x+m)=0的三個(gè)根可以作為一個(gè)三角形的三條邊長(zhǎng).那么實(shí)數(shù)m的取值范圍是 ( ) 查看更多

 

題目列表(包括答案和解析)

(2006•石景山區(qū)一模)已知函數(shù)y=f(x)對(duì)于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數(shù)).
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列,方法如下:
對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造過(guò)程中,如果xi(i=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;如果xi不在定義域中,那么構(gòu)造數(shù)列的過(guò)程就停止.
(。┤绻梢杂蒙鲜龇椒(gòu)造出一個(gè)常數(shù)列,求a的取值范圍;
(ⅱ)是否存在一個(gè)實(shí)數(shù)a,使得取定義域中的任一值作為x1,都可用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn}?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;
(ⅲ)當(dāng)a=1時(shí),若x1=-1,求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),Ox為極軸建立極坐標(biāo)系,且兩種坐標(biāo)系長(zhǎng)度單位一致.已知直線(xiàn)l的極坐標(biāo)方程為ρcos(θ+
π
4
)=
2
2
-1,圓C在直角坐標(biāo)系中的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),求直線(xiàn)l與圓C的公共點(diǎn)的個(gè)數(shù).

查看答案和解析>>

在直角坐標(biāo)系中,參數(shù)方程為
x=2+
3
2
t
y=
1
2
t
(t為參數(shù))的直線(xiàn)l,被以原點(diǎn)為極點(diǎn)、x軸的正半軸為極軸、極坐標(biāo)方程為ρ=2cosθ的曲線(xiàn)C所截,則截得的弦長(zhǎng)是
 

查看答案和解析>>

如果方程(x-a)(x+1)+2=0的兩個(gè)根分別在(-1,0)和(1,2)之間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,稱(chēng)函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說(shuō)明理由;
(2)若定義域D2=(1,5],是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(3)利用(2)中函數(shù),構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過(guò)程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過(guò)程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.
①如果可以用上述方法構(gòu)造出一個(gè)無(wú)窮常數(shù)列{xn},求實(shí)數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案